

1

Open Reference Architecture for Security
and Privacy

Asim Jahan

Maikel Mardjan

2

Open Reference Architecture for Security and Privacy

Version : 1.0

Date : 3-11-2015

Status : First Public Release

(c) 2015 Asim Jahan and Maikel Mardjan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

Use of these materials is permitted only in accordance with license rights granted.
Materials provided “AS IS”; no representations or warranties provided. User assumes all
responsibility for use, and all liability related thereto, and must independently review all
materials for accuracy and efficacy.

3

Table of Contents

About the authors ... 6

Asim Jahan .. 6

Maikel Mardjan ... 6

Foreword .. 7

Introduction .. 8

Why security and privacy ... 9

Advantage of using this reference architecture .. 10

Scope of this reference architecture .. 11

What about security patterns? ... 14

How this reference architecture is structured ... 15

Security Models .. 17

Introduction .. 17

Common attack vectors .. 20

Hosting, hardware, firmware and other invisible threats ... 23

Security Personas .. 24

Threat Models ... 26

Privacy Management Reference Model.. 27

NIST Security framework .. 28

Jericho Security Model .. 28

Security Architecture Landscape (OSA) .. 29

4

Software Assurance Maturity Model (SAMM) ... 30

Security within the SDLC process .. 32

IoT Threat Model .. 32

NIST Cloud Computing Security model .. 34

Mobile Threat model ... 34

DDoS model .. 35

OAuth 2.0 Threat Model ... 36

Security and Privacy Principles .. 38

What are principles? .. 38

Principles or requirements? ... 40

What are requirements? ... 41

Security Principles .. 45

Privacy Principles.. 93

Using Open Source for security and privacy protection ... 102

Introduction .. 102

What is open Source Software (OSS)? ... 104

The power of open for security and privacy ... 107

Determining quality of OSS for security and privacy applications .. 109

Architecture and design ... 112

Maintainability .. 113

Reliability ... 114

Security ... 115

Privacy .. 117

5

Change control ... 118

Documentation .. 118

Community .. 119

Integration... 120

Support ... 121

Legal ... 122

OSS Security and Privacy System Building Blocks .. 124

Introduction .. 124

OSS Security Applications .. 126

References .. 150

Licensing .. 152

Contributing ... 154

6

About the authors
This first release of the open reference architecture for security and privacy is created by
the following IT security architects:

Asim Jahan

Asim is passionate about helping companies to secure their business better as an
independent Senior Information Security Consultant: www.jahan-is.com. He speaks, blogs
and observes developments in cyber realms. Holding a Bachelor degree in Business IT &
Management of The Hague University and knowing project management very well he likes
to keep things practical using the Keep It Simple and Solid (KISS) method. Asim is married
and adores his two beautiful kids. If he’s not working he’s playing with them. Or he’s
reading or following a course. And somehow he finds time for helping young talented
bright students advance in their professional career: www.mythonline.nl. Take a look on
his LinkedIn profile: https://nl.linkedin.com/in/asimjahan.He loves Metallica, just like his
4 year old son.

Maikel Mardjan

Maikel is a IT security architect and loves to make designs for complex IT systems in a
simple way. Maikel holds both a Master (Msc) Business Studies of University of Groningen
and a Master degree (Msc) Electrical Engineering, of Delft University of Technology. Maikel
is TOGAF 9 Certified and CISSP (Certified Information Systems Security Professional)
certified. Maikel currently works for the innovative IT company nocomplexity.com. Despite
privacy concerns, Maikel can be found on Twitter too https://twitter.com/maikelmardjan

http://www.jahan-is.com/
http://www.mythonline.nl/
https://nl.linkedin.com/in/asimjahan
https://nocomplexity.com/
https://twitter.com/maikelmardjan

7

Foreword
Freedom is, was and will always remain important. This applies to our physical world as
well as our digital world. To maintain our freedom we need protection and good IT
security. Good security brings freedom to run your business the way you want, exchange
information when needed and to keep secrets when needed.

Good security and privacy do not have to be endlessly expensive. It starts with good
architecture and a solid design. This reference architecture gives you a head start for
creating your specific security and privacy design. You can use the proposed security and
privacy principles and the requirements. Furthermore you can use or start with security
models we present in this reference architecture as well. Also a list of example security
system building blocks is presented. Since open source solutions can be valuable to lower
security risks and reduce cost in your organization all presented solutions in this reference
architecture are open source. This book also presents a list of criteria to evaluate the
quality of OSS security/privacy solutions is.

Good privacy and security is difficult and complex. Making use of information presented in
this book assures you do not have to reinvent the wheel so to say. Good security and
privacy design for information systems is important. So do not lose your valuable time on
trivial aspects. You have security problems to solve for your unique situation!

Good protection for our privacy is getting more and more difficult and expensive. In our
opinion freedom requires very strong privacy protection assurances. We do not yet live a
world where cyber security is always at a normal (low) risk level of protection to protect
our core information assets like business and privacy related data. We still have a long way
to go.

For privacy and security we need strong governance institutes that set rules to keep our
(online) freedom.

If you want to help to remain freedom and want a more secure world, consider to support
e.g. The Electronic Frontier Foundation (https://www.eff.org), a non-profit organization
defending civil liberties in the digital world. Or support a similar local non-profit
organization in your country.

https://www.eff.org/

8

Introduction
In our opinion security is a process, not a destination to arrive at. Good security design and
implementation takes time, patience and hard work to achieve and maintain. You should
always start with the basics by creating an architecture or overall design. As security and
privacy will always be one of the most important subjects within IT the importance of good
security and privacy will keep growing since companies will be even more depending on IT.
Also the influence of IT will go deeper into our lives. Next to safety security and privacy will
become more important when we realize the potential risks that come with new IT
technologies.

This reference architecture is created to improve security and privacy designs in general.
In our opinion it is time to stop reinventing the wheel when it comes down to creating
architectures and designs for security and privacy solutions.

The reference architecture is not just another security book. Since libraries and book stores
are filled with decent books on security and privacy we wanted to create a book that is all
about reuse. There are two main pillars that drive this publication:

 Enabling reuse for companies of all sizes worldwide in order to design security
and privacy solutions

 Creating an open reference architecture that enables collaboration and
improvement in an easy way.

This reference architecture aims to enable you to create better and faster security and
privacy solutions by reusing the content provided in this eBook. And to encourage
collaboration on this eBook / reference architecture we created this reference architecture
under an open license. We have chosen to use the Creative Commons Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0) license. We know you like credit if you
contribute to a publication. If you contribute you will of course be mentioned in all updates
of this publication that follow. And since it is a true open license, your rights regarding this
publication are no different than ours or other contributors.

To summarize this eBook is an open reference architecture aiming to help you to design
better secure systems in less time and with less cost.

Why another reference architecture

Open publications for IT security and privacy are still rare. Despite the great work of the
OWASP foundation many IT security organizations are not that open.

9

When you create a new medicine that can and will save millions of human lives it is not
only ethical but also a moral right that people can use it. Science is there so we can build on
each other’s ideas.

This means progress for all. We all win. Within the field of software coding Open Source
(OSS/FOSS) is becoming the new de facto model. Why create something anew that you
already have created?

Within the field of security consultancy and security architecture Open is not (yet) the de
facto standard. Of course some key assets as passwords or personal data should never be
accessible. But creating security architectures and security designs is by many positioned
as an art. That is strange of course. If you need a new color on your wall you do not call an
artist, but a painter. The same goes for security: go for a proven open solution that has been
used before. All solutions are of course mostly always context specific. No organization is
the same. But that does not mean that every aspect for your architecture, and design should
be new. We all use standard solutions where possible. Reuse of architecture and design is
rare at the least. This reference architecture is aimed at enabling reuse of parts that are
needed in every security architecture and design. That means less art, but the puzzle that
remains is more interesting to solve. Since this is the real context related problem!

Availability of good references with solid reusable information makes creating security
architectures easier and more fun. Easier because when you have a good security reference
architecture you do not need various books to find out what already good proven parts for
your architecture could be. More fun because you have more time to figure out what the
best solution for your unique security challenge is. And we see thinking and resolving real
security issues as fun. Minimizing security and privacy risks is always unique and context
depended. E.g. unique stakeholders, different security control system (organization) and a
different way of dealing with risks.

Why security and privacy

Privacy is getting more and more important. New technologies make our lives better but
put our freedom and privacy under pressure. Terrorist and (cyber) criminals can be more
easily detected by analyzing large amounts of data. Also ‘diseases’ can be better cured using
more data of more people.

Currently great improvements come at a large price: Big data analytics systems are going
over your user data and user data traces (e.g. mouse movements in web pages, location
data) multiple times a day. Companies know better what you need, think and eat tomorrow
than you. Your location is continuously being tracked, due to all the communication devices
you use. Using public transport cannot be done anonymously anymore while cars are full of
track and tracing technology.

10

When privacy is designed first just as security we should have less concern on security and
privacy hacks. Also if more IT designs are open and published under an open license
chances of mistakes in architecture and design will be less. Partly due to pressure of
openness but also since more experts can contribute to lower security and privacy risks
concerned with public or private systems. Of course: Transparency of governmental
systems will be a (very) long way. Companies however see advantages of open solutions
more and more. Using open solutions, open business models and open source software for
IT. A large number of companies exist that benefit from using open designs along with open
source software.

Many new technology companies are successful due to the fact that they promote open
(FOSS) solutions. E.g. Companies like Automattic (https://automattic.com/), Acquia
(https://www.acquia.com/) or IMatix (http://www.imatix.com/) are all very successful
due to a true GPL OSS policy.

We know that privacy can be regarded as something totally different than security. This is
why we had some resistance with combining a reference architecture for security with
privacy ‘things’. But our research showed that:

 Privacy has many relations with security. Many problems are similar.

 Privacy aspects are by far not yet taken serious into architectures and design
the way they should be. It took decades and billion dollar (or euro) campaigns
before security aspects were taken more seriously into account. And yet
security is still difficult due the fact that doing it right gives no direct business
value. Doing it wrong always means a true disaster for your business. And he
same goes for privacy.

 Security and privacy are interrelated. Without security there is no privacy!
Never.

Since privacy and security are very much interrelated both aspects will be outlined in this
reference architecture.

Advantage of using this reference architecture

A good reference architecture saves time in many ways:

 You can create a solution architecture based on it for your specific situation.

 It enables you to speed up the process of creating a specific solution.

https://automattic.com/
https://www.acquia.com/
http://www.imatix.com/

11

 It contains valuable content and general background information which can be
used, reused or referred to.

Information security architecture is an abstraction of a design that identifies and describes
where and how security controls are used. It also identifies and describes the location and
sensitivity of both user and application data.

This open reference security architecture aims to help you create your context specific
architecture faster and with higher quality.

This reference architecture is designed to assist and guide architects, security designers
and developers to make better decisions and to reuse quality architecture knowledge
regarding cyber security aspects.

The purpose of this document is to reuse good security principles, requirements and design
patterns to save precious time and budgets. Since security by obscurity is in general not a
good practice, we also provide a list of OSS security software products.

Systems built with tough privacy rules will not always guarantee that information including
valuable privacy content is secure. Since security never is nor can be perfect a very secure
system will always contain risks concerning privacy.

Who should use this reference architecture

The target audience for this reference architecture are security experts and companies who
can see the benefit of reuse and using open source security building blocks. Specifically all
business owners, security architects, security designers, asset owners, software
developers, system administrators and (end) users who have a role in reducing security
risks.

Scope of this reference architecture

Not all aspects of security and privacy can and should be outlined in a reference
architecture. This reference architecture is not about teaching what security and privacy is.
This reference architecture is not about providing detailed technical information on
solutions that come across.

This reference architecture is also not a lecture book on how to design the perfect security
solution architecture. There are many resources (books, courses, foundations) that will
teach you the benefits of creating an (enterprise) architecture and how you can embed
architecture into your agile way of working. Be aware of course that an agile way of

12

creating new products, systems or software gives some tension regarding security and
privacy aspects. It is difficult to add security and privacy aspects at a later point if not done
correctly from the start. So use new trends whenever possible. But if you were to design ‘A
human mission to Mars’ important aspects like security and safety cannot wait till later.

Since you are reading this reference architecture, we assume you are already aware of the
complex field of security and privacy. Very detailed books, papers and studies exist for
learning what security and privacy really is. So this reference architecture will not give you
in depth detailed background information on all security and privacy aspects. Not from an
organization point of view and certainly not from an IT point of view.

The scope and aim of this open security architecture is to enable you to create better and
faster security solution architectures and designs using open reusable building blocks and
standards. Within the scope of this reference architecture are:

 Security solution aspects, e.g. models, that must, should or could be reused in a
security or privacy solution architecture.

 Information that can be reused in an easy way in your context specific
security/privacy solutions. E.g. security and privacy principles.

 Criteria aspects you can reuse when selecting security solutions for your
solution architecture.

 (Sample) Security/Privacy Solution Building Blocks that are created for reuse.
These SBB’s serve as example to give you a more in depth overview of
possibilities you are maybe not familiar with.

Creating security architecture consists of the following high level steps:

 Dive in the business strategy and organization;

 Gather security and privacy principles and requirements;

 Determine important constraints that apply to your architecture or design.
There are always constraints, e.g. time, budget, subject matter experts available
etc.

 Derive the architecture building blocks from your architecture or design.
Architecture building blocks help you to scope your solution. Using architecture
building blocks gives a clear view on (new) integration aspects and where
completely new solutions fit in the total IT landscape.

13

 Select (or create, buy) the new Solution Building Blocks. Prerequisite is of
course that the functionality and technical constrains must be clear. Often
prerequisites are derived from the previous design step.

Within this reference architecture we will focus on the following subjects that you should
face when creating a security or privacy solution:

 Principles: We will provide a reusable list of security and privacy principles.
Since this open security and privacy reference architecture has an Open
approach we encourage you to add your principles to the open data source we
created to help others from reinventing the wheel again and by doing so they
save time.

 Solution Building Blocks: We provide a list of solid reusable security and
privacy tools and building blocks. Of course all tools and building blocks are
open source. One core principle is that good security should be open. Within
this eBook a detailed outline is given on the question if extra risks factors are
involved in using open source solutions.

14

 Reusable architecture and design patterns for security and privacy problems.
During the architecture and design phase threat models are constructed. This
document contains generic threat models, since these are reusable. That can be
improved when the model is made publically available.

So many aspects regarding security and privacy our not in scope of this reference
architecture.

What about security patterns?

In system design, coding and architecture you should strive to reuse predefined patterns. A
pattern is a reusable way to solve a standardized problem. This can be in software code,
design or an organization problem.

Good patterns within the security and privacy field are rare. We did research on available
reusable patterns that can help creating security or privacy solutions faster. Our findings
are:

 Good described reusable security and privacy solution patterns are rare.

15

 Reusable architecture and design patterns for security and privacy problems
are scarce. Most relevant patterns are vendor specific, so are targeted to the
solution building block reuse aspects.

 Use of patterns can increase complexity. Understanding pattern language and
semantics is important before being able to judge if your chosen pattern applies
to the unique challenge that must be solved. Since libraries are written on
generic problem solving methods (note: the golden book is still not found) some
precaution using patterns is very healthy!

 Developing patterns (also in a collaborative way) for a reference architecture
takes up a lot of precious time while the practical use (or reuse) in a solution
architecture is always questionable.

We hope good developed patterns for dealing with typical security and privacy problems
will be developed in future. Also we hope these patterns will be developed in an open
collaborative way and published under an open license so everyone can benefit and
participate. Some good attempts have been done, so maybe time for a new OWASP project
to give it a boost.

Currently we think that when you write a good solution architecture in which you describe
your problem clearly will help to create a library of reusable solution patterns for security
and privacy. One import constraint is that your solution architecture should be published
under an open license somewhere on the internet. In this way every organization, security
designer can benefit. Some governments already publish their architecture documents
under an open license (CC) on the internet. This is a great way for governments to align
better with society. Everyone can see how complex digital information systems become
and can suggest improvements. Detailed configuration information is not needed to judge
the risks of security or privacy vulnerabilities. Companies worldwide are still very anxious
to benefit from the possibilities that a more open transparent company (using open
licensing) can give.

How this reference architecture is structured

This reference architecture is built around information that helps you creating security or
privacy solution architectures.

16

It is also built to give you reusable information in an easy to find way. The next chapter
('Security Models') deals with models, attack vectors and information that helps you create
the threat model you need to develop in your solution architecture.

The chapter 'Security and Privacy Principles' presents solid security and privacy
principles. Focus is on use and reuse. The chapter 'Using Open Source for security and
privacy protection' outlines facts to demystify common fads regarding use of Open Source
and security and privacy products. This chapter outlines how to evaluate OSS Solution
Building Blocks for security and privacy applications. The chapter 'Open Source Security
and Privacy products' presents a list of great OSS solutions available to be incorporated
into your security or privacy solution or just to take a look at.

The appendixes will give you information on reference used, as well as information on how
you can contribute with the next version of this reference architecture.

17

Security Models

Introduction

The essence of information security is to protect information. It is just that simple. So
whenever possible do not make it more complicated than needed. Complexity for cyber
security and privacy arise when information needs to be shared or must be made
accessible by some digital device. The world where information was only available in
physical archives is long gone. The focus from physical information security is shifted to
cyber information security. But be aware: Crucial principles of centuries of physical
information protection are still valuable today. Especially principles related to the
intangible soft issues when information is shared. Ever wondered how some organizations
managed to keep their valuable information secret for many decades?

Information protection is needed against unauthorized access, use, disclosure, modification
or destruction. That means several security measures are needed to protect information
from unauthorized viewers. Measures can be implemented by procedural, physical or with
complex IT tools. But before classifying and creating or finding good measures it is
essential that the problem field is made clear.

Creating effective solutions for information security problems can be done by creating a
model of the problem situation. Within a model all elements that relate with the problem
situation are brought together to study effective solutions. Without going into detail on
system science or problem solving theory: in general systems consist of sub-systems,
objects, functions or processes, and activities or tasks.

The key in creating a good model to solve a specific information security problem is to
model the problem, not the complete system with all elements. This because modelling the
world completely is ineffective, time consuming and it does not give a direct answer to
solve a problem situation. It is far better to start with a small model of a problem and create
extensions on this model if needed.

The field of modelling problem situations to solve information security problems is not
new. Many models in literature exist. Reusing a good model can save you time and
safeguards you from making mistakes. A prerequisite is that you start with a good model
that can be trusted and is intensively reviewed by large numbers of subject matter experts.

There are many good security models that can assist in creating a solution architecture to
solve a specific security problem for an organization. Mind that a model can be expressed in
many different forms. E.g.:

 One or more images;

18

 Text;

 Software model

Within the field of modelling a distinction can be made between ‘hard’ and ‘soft’ models.
Hard models are often mathematical (risk) models whereas soft models are more quality
based models. Since using hard models often gives a false sense of reliability and requires
full insight of all assumptions made it is more productive to reuse soft security and privacy
models. When creating solution architecture, you need:

 A threat model (what are the threats your solution gives protection against)

 Insight in commonly used attack vectors. This means you need to have some
view on the attack vectors used in the use case?

Creating a good security or privacy design or architecture means you never ever start with
selecting tools for solving your problem! Selecting tools should be the last phase of your
security or privacy design phase. You select tools when it is clear that the tool will support
in solving your security or privacy problem. Tools alone are never enough to solve security
or privacy problems. You need to fit in tools within your security and privacy processes.
Several problems exist with many IT security tools that will hit you when you start too
soon with the solutions instead of a thorough problem diagnosis and solution design.
Wrongly selected security and privacy tools give the following issues:

 High costs;

 Complex challenges to implement and manage;

19

 Daily administration of a chosen tool set requires significant IT effort while it
remains unclear if the tools are effective in reducing security risk;

 Overlap in functionality of security application landscape. More is not always
better. To be able to justify the application of security tools for your problem a
context specific security architecture should give input to the following
questions:

o What is protected with what?

o What are the main threats we need protection against?

o What is not protected by information security policies or tools?

o What is in scope or out of scope for your security architecture? E.g. business
continuity management, safety management, financial risk management,
daily IT operations, physical (building) security etc. In the end everything
has a relation with information security, but you cannot cover all business
aspects using an information security architecture document. The key is to
focus and keep the scope clear or else complexity will become
overwhelming.

o What architecture or design decisions have been made and must be
validated explicitly?

o What is the model of your protection? It is far more easy to evaluate and
improve a model, than adding new or improved security products
continuously. Make sure that within operational security management
processes learning and improving are key periodic targets.

o Does the security model cover all crucial security and privacy principles and
requirements?

o Are the residual risks when this solution acceptable for the key
stakeholders?

20

IT security in general is seen as a complex problem field, due to the many technical and
nontechnical aspects involved. Since 100% information security is impossible, being able to
qualify risks is crucial in getting an accepted level of security protection. Good modelling
helps you to qualify security and privacy risks.

In general, it is far more easy to reuse proven concepts and models when creating your
own security model. This way you build on the work of others and using a good model
reference will reduce the risk of making crucial mistakes.

This section covers some commonly used models and elements that can be reused when
creating a solution for a specific information security problem.

Elements that are presented are attack vectors, some examples of security personas and
some great security models that can assist you when creating your security design.

Common attack vectors

Good security is goal oriented. Good security architecture is tailored to your
situation. When defining a product or new (IT) service one of the key activities is to define
your specific security requirements. Defining requirements is known to be hard, time
consuming and complex. Especially when you have iterative development cycles and you
do not have a clear defined view of your final product or service that is to be created.

Defining attack vectors within your security requirements documentation is proven to be
helpful from the start. Attack vectors will give more focus on expected threats so you can
start developing security measures that really matter in your situation from the start.

Attack vectors are routes or methods used to get into information systems. Attacks are the
techniques that attackers use to exploit the vulnerabilities in applications. Many attack
vectors take advantage of the human element in the system or one of the maintenance
activities defined for the system, because that’s often defined as the weakest link.

Within the IT cyber security world many terms and definitions are used. Attack vectors
usually require detailed knowledge to judge whether the vector is relevant in a specific
situation.

Some attack vectors apply to critical infrastructure components, like NTP or DNS. E.g. in a
rogue master attack, an attacker causes other nodes in the network to believe it is a
legitimate master. Contrary to spoofing attacks in the Rogue Master attack the attacker

21

does not fake its identity, but rather manipulates the master election process using
malicious control packets.

The good news is: The number of possible attack vectors is limited. The bad news is: The
ways an attack vector can be exploited is endless. Unless decent security measures are
taken to minimize attacks using this specific attack vector. Good designed security
solutions are not that complicated and complex after all.

Common attack vectors are:

 Analysis of vulnerabilities in compiled software without source code

 Anti-forensic techniques

 Automated probes and scans

 Automated widespread attacks

 Client validation in AJAX routines

 Cross-site scripting in AJAX

 Cryptographic Performance Attacks

 Cyber-threats & bullying (not illegal in all jurisdictions)

 DoS Attacks

 Email propagation of malicious code

 Executable code attacks (against browsers)

 Exploiting Vulnerabilities

 GUI intrusion tools

 Industrial espionage

 Internet social engineering attacks

 Malicious AJAX code execution

 Network sniffers

 Packet Manipulation

22

 Packet spoofing

 Parameter manipulation with SOAP

 Replay Attack

 RIA thick client binary vector

 Rogue Master Attack

 RSS Atom Injection

 Session-hijacking

 Sophisticated botnet command and control attacks

 Spoofing

 Stealth and other advanced scanning techniques

 Targeting of specific users

 Web service routing issues

 Wide-scale trojan distribution

 Wide-scale use of worms

 Widespread attacks on DNS infrastructure

 Widespread attacks using NNTP to distribute attack

 Widespread, distributed denial-of-service attacks

 Windows-based remote access trojans (Back Orifice)

 WSDL scanning and enumeration

 XML Poisoning

 XPATH injection in SOAP message

It is recommended that you specify in your solution architecture the attack vectors that
apply to your use case. Remember to put the explanation of the attack vectors used in an
appendix, since not all your stakeholders will know what e.g. ‘Spoofing’ is.

23

Hosting, hardware, firmware and other invisible
threats

Computer security has become much harder to manage in recent years. This is due to the
fact that attackers continuously come up with new and more effective ways to attack our
systems. But also the emerging trend of Cloud Computing created an extra level of
complexity within the field of cyber security and privacy protection.

A commonly wide spread fad is that Cloud Hosting is more secure than on premise. The
truth is that it is different. Security principles and all attack vectors still apply. The main
factors that make Cloud hosting more complex to manage are:

 Less control

 Technical insight in exact physical and IT security measures are often unknown.

 Influence and control on continuous operational changes on the cloud hosting
facilities are not transparent for cloud consumers.

 Trust plays a great role. You must have trust in audit and security reports
created by a third party. The advice is to obtain always a right to perform a
security audit yourself, but at large cloud hosting providers this is often not
allowed.

Whether you use Cloud hosting of host your computer services still on your own data
centre all hardware threads still apply.

Since true open source hardware is still seldom seen, currently your valuable information
is vulnerable due to the following more hardware related attack vectors:

 BIOS attacks. BIOS is always written to a non-volatile storage device such as an
EEPROM

 Firmware attacks

 Physical device tempering. Mostly done by rewiring CPU’s, CPU boards. Famous
are of course the attacks on Crypto Devices (HSM’s) but since hardware
tempering on normal hardware is so easy you seldom hear how easy hacking on
‘standard’ computer hardware devices is.

24

 Physical data centres. Your data is not (never) secure in a cloud you do not
control or manage.

An attack vector that many people forget to consider is the boot process itself which is
almost completely controlled by the BIOS.

When you are still in control of your own computer hardware, consider to overcome the
malicious attacks on BIOS by one the following methods:

 Digital Authentication Method

 Rollback Prevention Method

 Physical Authentication Method

Threads related to hardware are often invisible. This does not mean they don’t exist. Since
computer hardware is seldom open, many threads are still not widely known. In order to
protect your core information you should always take measures to be able to reduce the
likelihood of getting targeted by attack vectors that are hardware related. Many examples
exist of poor designed CPU’s, firmware, network devices, storage devices etc. with offers
great opportunities to attackers.

Security Personas

Humans are the most important threat to security and privacy.

One of the tools of IT architects and UX designers is to work with so called ‘Personas’.
Personas are fictional characters created to represent the different user types that might
use a system, website, product or service. Using personas is common practice when dealing
with UX design. But when developing a security architecture for a new system, service or
website security personas are also valuable to use. Security Personas force you to think
different about the goals and behaviour of attackers that are going to hit your system.

Security Personas identify the user motivations, expectations and goals responsible for
driving bad behaviour. Of course not all personas will behave bad on purpose. Sometimes
mistakes on the use of the system or social engineering will affect the way a persona can
compromise your system.

Benefits of Personas

Personas help to focus and help to make design decisions concerning IT components by
adding a layer of real-world consideration to the conversation. They also offer a quick and
inexpensive way to test and prioritize those features throughout the development process.
In addition, they can help:

25

 Stakeholders and management to discuss architecture building blocks to protect
your system.

 Information architects develop informed secure wire-frames knowing possible
interface behaviour.

 System security engineers/developers to decide which approaches to take
based on user behaviours.

 Testing

For security personas it is good to outline:

 Demographics such as age, education, ethnicity, and family status.

 The goals and tasks they are trying to complete using the system (or website),

 Their physical, social, and technological environment.

 Responsibilities: As implemented in future Identity and access management
system, but also the formal organization responsibilities belong to the role
within the organization.

Defining security personas is not hard. Some examples of security personas:

 Employee

 Visitor (in person)

 Internet visitor (web)

 Administrator

 Manager

 Director/CEO

 Angry customer

 Competitor/rival

 Neighbours

Use security personas in your security architecture so the proposed security measures can
be designed more in depth and evaluated since the security personas are part of your

26

security model. The list given in this section can be used as starting point to expand the
personas for your context more in depth.

Threat Models

This section is not about teaching you how to model you specific security or privacy
solutions. By now you know that your model should be built out of attack vectors, security
personas and security and privacy principles and requirements. The next chapter of this
reference architecture deals with reusable principles in depth. First we present valuable
models that can be reused when created a security or privacy solution architecture.

Security threat modelling, or threat modelling, is a process of assessing and documenting a
system's security risks. Security threat modelling enables you to understand a system's
threat profile by examining it through the eyes of your potential attackers. Your security
threat modelling efforts also enable your team to justify security features within a system,
or security practices for using the system, to protect your corporate assets.

Many ways exist to build a threat model but in essence a threat model is a conceptual
model that:

 helps to understand a situation and

 is helpful in reducing security or privacy concerns. So helpful in solving your
security problem.

A security or privacy conceptual threat model is usually built of relevant elements and their
relations that matter in a security problem situation.

In general, a conceptual model is constructed based on a specific problem situation you
want to solve. In our case the aim is to outline important concepts regarding security and
privacy. So our collection of conceptual models is aimed at generic reuse.

Since the real-world problems of security and privacy are outlined in a large number of
publications, within this section we only present conceptual models that are based on the
following selection criteria:

 Generic use;

 Non-commercial;

 Open.

With open we mean that the institute or company created the model has an open process
that allows everyone to improve the model. Of course open is not always really open

27

without borders and thresholds. Even the open group is not really open for public
participation, since large memberships fees form a threshold. The OWASP foundation is
however one of the best examples on how open should be. That is open license on content
(common creative) and no impediments and no requirements for participants who want to
join the working groups.

For security and privacy many models exist. Most models are aimed for evaluating risks for
auditors and other stakeholders. In the sections below a collection of (almost open)
security and privacy models.

Privacy Management Reference Model

The Privacy Management Reference Model and Methodology (PMRM) of the OASIS group
provides a model and a methodology for:

 Understanding and analysing privacy policies and their privacy management
requirements in defined use cases; and

 selecting the technical services which must be implemented to support privacy
controls.

The model is particularly relevant to evaluate use cases in which personal information (PI)
flows across regulatory, policy, jurisdictional, and system boundaries.

More in-depth information regarding this model can be found on the OASIS site (see
references).

28

NIST Security framework

Whenever you feel the need to draw a process regarding security or risk processes: resist
the temptation! The US based NIST organization is a well-known governmental
organization that offers great publications on all thinkable subjects regarding security.

One of the simplest, yet most frequently model is displayed here below.

On the NIST site (see references) you can find in-depth information regarding all sub
functions of this security framework. The experience is, is that it is far better to check what
in your use case needs special attention. If you ever feel the need to create your own
security framework, think again. In essence all come down to the high level framework
described by the NIST organization. Using a broad used security framework has a number
of advantages:

 Easier communication with stakeholders;

 Easier knowledge and experience transfer between security experts of different
organization;

 Saves time, time you can use to solve the real context specific issues regarding
practice use and implementation of the security functions.

Jericho Security Model

29

The Jericho(tm) Security architecture model is built upon principles. The advantages of
using the Jericho model for security are:

 A security architecture model built upon the Jericho conceptual model is built
around maintaining flexibility and protects the most important security objects
for the stakeholders.

 Integration: Easier to build secure processes with other companies and trusted
partners.

 Simplifies use of public networks and cloud solutions

 Aimed for use of open principles and open solution building blocks.

Unfortunate the Jericho framework is not a real open security framework. It is copyrighted
by the open group (see references chapter for more information on this model). There are
trademarks involved and all publications are copyrighted. However due to the work of
many we can make use of the developed knowledge within the Jericho working group. The
Jericho Forum®, a forum of The Open Group, was formed in January 2004 and is no longer
active. However, the approach of this forum towards security is still alive.

Security Architecture Landscape (OSA)

30

Thanks to the Open Security Architecture (OSA) group there is a real open security
landscape (http://www.opensecurityarchitecture.org/). All OSA material is CC by sa
licensed, which means you can freely use and improve it.

Below is the OSA Security architecture landscape:

Source: OSA (http://www.opensecurityarchitecture.org)

The OSA Security architecture is based on patterns. Which mean for every pattern defined
the aim of the community was/is to develop a standardized solution description.
Unfortunate the OSA community is not very active anymore, so all IT security patterns
around cloud are not yet incorporated.

For a number of reasons we have chosen not to use patterns in this security and privacy
reference architecture. However in some cases using patterns can give an advantage. (See
the Introduction, section 'What about security patterns?' for more information).

Software Assurance Maturity Model (SAMM)

The Software Assurance Maturity Model (SAMM) is an open framework to help
organizations formulate and implement a strategy for software security that is tailored to

http://www.opensecurityarchitecture.org/
http://www.opensecurityarchitecture.org/

31

the specific risks facing the organization. SAMM is useful resource if you are working on a
process architecture that is needed to control all kind of aspects of software security. Our
advice is to take the processes as defined in SAMM as point of departure within your
security process design documentation. Formulating processes yourself in not productive,
so use this valuable source of information instead of reinventing the wheel.

To get the baseline situation of your security process architecture fast in scope, you can use
a SAMM self-assessment test (see APPENDIX). Using a self-assessment test you can get a
very quick overview on the status of the IT security processes within your organization.
SAMM is an OWASP project.

SAMM will aid in:

 Evaluating an organization’s existing software security practices

 Building a balanced software security assurance program in well-defined
iterations

 Demonstrating concrete improvements to a security assurance program

 Defining and measuring security-related activities throughout an organization

As an open project, SAMM content shall always remain vendor-neutral and freely available
for all to use.

Source: OWASP

Reuse of the SAMM process and usage should be encouraged. This OWASP project is like all
OWASP projects a real open project. All content is available under a Creative Commons
License (by-sa). If you want to improve this SAMM framework, OWASP is a real open
foundation where everyone can participate without borders. Also all communication and
collaboration is truly open.

32

The SAMM model was first aimed at evaluating the status of software security within an
organization. However due to the use in practice the framework can also be used to
improve many other aspects surrounding security and privacy.

Security within the SDLC process

The view below (source OWASP) is a model of how security fits into the SDLC (Software
Development and Lifecycle) process. Within almost every solution architecture you should
take the SDLC into account to position where your solution fits and how maintenance is
positioned within the SDLC phases.

Security and privacy should be embedded in the SDLC process. Always. The OWASP
conceptual model of the (simplified) SDLC chain shows on high level where security
activities hit the SDLC process.

IoT Threat Model

We should be happy: The IoT (Internet of Things) is not everywhere present yet. When IoT
is migrated from fiction to reality, security and privacy will be under enormous risks.

Internet-of-Things is a result of a technical revolution, which reflects with future
computing and communications including existing and evolving internet. Over the time
Internet technologies have evolved, and become Internet of Things. With the advent of this
paradigm the dream to convergence everything, and everyone under a single umbrella has
come true. Machine-to-machine (M2M), Radio Frequency Identification (RFID), context-
aware computing, wearables, ubiquitous computing, and web-of-things all are considered
to be seamlessly integrated into a global information network, which has the self
configuring capabilities based on standard and inter-operable communication protocols .

33

Below a generic threat model for the IoT world:

Note the view is not complete. Missing these views are:

 IDS, pentest tools, correlation tools etc (or under system security)

This IoT thread model and views are good for addressing the following areas in more detail
in your security solution:

 Confidentiality

 Integrity

 Availability

 User Management

 Network Security

 Key Management

 Security Management

 Governance

 Risk

 Regulation

34

 Audit

 Access Control

 Standards for Interoperability

NIST Cloud Computing Security model

Sooner or later you will be creating a solution or privacy architecture where cloud hosting
plays a significant part. The NIST cloud computing security reference model is a very good
model to use as reference.

Mobile Threat model

35

Since mobile is everywhere, you should always take mobile threats serious in your solution
architecture. Even if you think you have a special gateway for mobile traffic, most devices
are always vulnerable for mobile threads.

The model presented here below can help in identifying the threads.

DDoS model

DDoS attacks are hard to prevent. However, every security or privacy architecture should
take DDoS attacks into account. This to design solution that are more resistant against the
easy DDoS attacks.

Problems due to DDoS Attacks:

• DDoS attack is an attempt to make a systems inaccessible to its legitimate users.

• The bandwidth of the Internet and a LAN may be consumed unwontedly by DDoS, by
which not only the intended computer, but also the entire network suffers.

• Slow network performance (opening files or accessing web sites) due to DDoS attacks.

36

• Unavailability and inability to access a particular web site due to DDoS attacks.

The model below gives a DDoS attack taxonomy. This can be useful if you are designing
solutions to be more resilient against DDoS attacks.

REF: http://file.scirp.org/Html/5-7800164_34631.htm

OAuth 2.0 Threat Model

Using the OAuth protocol gives you many advantages. And since this protocol is open you
can save a lot of time when making use of the OAuth Threat Model when using OAuth in
your use case. A detailed description of the thread model is found in RFC 6819
(http://tools.ietf.org/html/rfc6819).

In the picture below the visual of the threat model, where the numbers are references to
the section in the IETF RFC.

http://file.scirp.org/Html/5-7800164_34631.htm
http://tools.ietf.org/html/rfc6819

37

OAuth 2.0 threat model.

(source: http://hdknr.github.io/docs/identity/oauth_threat.html)

http://hdknr.github.io/docs/identity/oauth_threat.html

38

Security and Privacy Principles
Every organization is different. However, when you are faced with the challenge to create a
new (IT) product or service having good principles requirements before you start will help.
Always.

We have simplified this complex but crucial step needed in every project. In this chapter
you find lists of:

 Security principles and

 Privacy principles

We encourage reuse! We also encourage you to add principles or correct these principles.
In time we are aiming to create a collection of the best e.g. 100 principles for security and
privacy that can be used when creating a specific solution architecture. A good reference
architecture should save you time when creating a solution architecture, so use or reuse
these principles from this architecture. In this way you have more time to focus on the
specific context related problems. In essence the use or reuse of good security and privacy
principles prevent you from making crucial design and implementation mistakes in your
use case.

What are principles?

Principles are statements of direction that govern selections and implementations. That is,
principles provide a foundation for decision making.

Principles are used within business design and successful IT projects.

Definition:

A principle is a qualitative statement of intent that should be met by the architecture.

Security architecture principles are used to translate selected alternatives into basic ideas,
standards, and guidelines for simplifying and organizing the construction, operation, and
evolution of systems.

It is important to draw an early differentiation between standards, requirements, and
principles.

39

 Standards are “musts”; that is, they require compliance.

 Requirements articulate specific needs that must be met by a specific solution.

 Principles, on the other hand, are more general and serve as a framework for
making choices by providing guidance about the preferred outcome of a
decision in a given context.

As such, the purpose of our collected principles is to support decision making with regard
to security and privacy design within all organizations.

The following criteria can be used to determine the quality of a principles:

 Understandable: Every stakeholder involved should be able to understand the
meaning, purpose and implications of a principle.

 Consistent with other defined (or selected) principles.

 Aimed to the goal.

 Usable.

Principles will guide architects, consultants and designers with decision making. Within
business design and architecture, you find many people with strong opinions with what a
good and usable principle is or is not. Discussion is always good to get a better
understanding of each other mental maps. However, discussions on what a good security
principle is should be target on what you can do with principles. How will principles help
you and your company? Can principles help you doing projects faster and better? Can
principles prevent your company architecture and software systems becoming the next IT
over complexity landscape?

Having security and privacy principles are a crucial foundation as they establish the basis
for a set of rules and behaviours for any organization.

40

Principles or requirements?

The exact difference between what a principle is and what a requirement is, is a long
running debate. Long running debates does not make your organization more secure. It is
time consuming and in the end no one is right. So do not fall in the trap of such a semantic
discussion.

Security and privacy principles have the following characteristics:

 Principles are general rules and guidelines.

 Principle are often a qualitative statement of intent that should be met by the
architecture.

 Principles are guidance to help making decisions with the help of rules.

Your security and privacy design should be created based upon many design decisions.
Using (approved) principles will help.

Security and privacy requirements tend to have the following characteristics:

 Can be SMART (https://en.wikipedia.org/wiki/SMART_criteria) formulated. So
you can test if a requirement is implemented well.

https://en.wikipedia.org/wiki/SMART_criteria

41

 A requirement is more context specific than a principle. E.g. your users can have
different requirements on user-friendly and secure login than users of another
company.

 Requirements can be prioritized within a project, where principles are more
directly shaping an architecture or design.

Principles can be regarded and threated as requirement, but due to the formulation
requirements seldom can be directly used as generic principle.

Although the difference between security and privacy principles and requirements is most
of the time hard to make, having requirements in addition to principles will improve a
privacy or security design.

This because using requirements leaves more room to discussion and prioritization with
direct stakeholders.

What are requirements?

Many studies show that poor requirements are a prime cause of project failure or
insufficiency. Tools that assist you with creating good security requirements or let you
reuse security requirements are rare. But it is crucial for good security that you start with
collecting principles and requirements before coding or buying software.

Within traditional waterfall methodologies a requirements document is created by a
business analysts and subject matter experts who would spend significant time on creating
requirements that are never complete. Developers are often faced with challenges
deadlines and have little time to handle and implement all requirements correctly. In
practice there is simply have no time to get familiar with the real meaning and purpose of
all requirements and developers make guesses on the real goal of requirement statements.

In most projects today, a lapse of several months would either invalidate these
requirements or miss the market window altogether. Internet speed and agility mean that
projects must be quick to market and must evolve continuously to meet the changing needs
and demands of their users.

Common Mistakes regarding security and privacy requirements

 Basing a solution on complex or cutting edge technology and then discovering
that it cannot easily be rolled into the 'real world'.

 Not prioritising the User Requirements, for example 'must have', 'should have',
'could have' and 'would have,' known as the MoSCoW principle.

42

 Not enough consultation with real users and practitioners.

 Solving the 'problem' before you know what it is.

 Lacking a clear understanding and making assumptions rather than asking.

Requirements gathering is an essential part of any project and project management.
Understanding fully what a project will deliver is critical to its success. This may sound like
common sense, but surprisingly it's an area that is often given far too little attention.

Many projects start with the barest headline list of requirements, only to find later the
customers' needs have not been properly understood.

Since security and is always in the end risk based we recommend that you prioritise your
chosen requirements. We advise to use the de-facto standard: the acronym MoSCoW.

This stands for:

 M – MUST: have this.

 S – SHOULD: have this if at all possible.

 C – COULD: have this if it does not affect anything else.

 W - WON'T: have this not now, but would like this in the future.

Requirements marked as "Won't" are potentially as important as the "Must" category.
Classifying something as "Won't" acknowledges that it is important, but can be left for a
future release. In fact a great deal of time might be spent in trying to produce a good
"Won't" list. This has three important advantages:

1. Stakeholders/Users do not have to fight to get something onto a requirements
list.

2. Thinking about what will be required later, affects what is asked for now.

3. The designers seeing the future trend can produce solutions that can
accommodate these requirements in a future release.

Reuse of requirements provides a number of benefits, including the following:

1. Motivation for selection of components: Requirements guide the selection of
optimal components for reuse. When requirements are transferred between
development efforts, the rationale behind the original component selection
decision is made available to the system designer.

43

2. Context for reuse decisions: Requirements trace back to information gathered
from domain experts and system users. Requirement-based reuse decisions are
set in the context of domain processes or specific implementation needs.

3. Parametric constraints: Requirements come in many forms, including
parametric constraints (i.e. the system delivered must run at speed x) as well as
general guidelines (e.g. the system's interface should be user friendly) and
domain tasks and processes. Parametric constraints allow a static evaluation to
narrow the field of available components.

An example security requirements list:

RequirementID Requirement Description Type Priority

10
Sensitive data is not logged in clear text by the
application.

Implementation Must

20
Database connections, passwords, keys, or other
secrets are not stored in plain text.

Business Must

30 Encryption keys must be secured. Business Must

40

Privileged and super-user accounts
(Administrator, root, etc.) must not be used for
non-administrator activities. A secure
mechanism to escalate privileges (e.g., via User
Account Control or via sudo) with a standard
account is acceptable to meet this requirement.
Network services must run under accounts
assigned the minimum necessary privileges.

Functional Should

50 Sensitive data is not stored in persistent cookies. Business Wont

60 Sensitive data is transmitted with the HTML Implementation Should

44

POST protocol. So GET is NOT used for sensitive
data.

70

User ID must be unique. Passwords must be
stored in irreversible encrypted form, and the
password file cannot be viewed in unencrypted
form. A password must not be displayed on the
data entry/display device. Passwords must be at
least eight characters long. Passwords must be
composed of at least three of the following:
English uppercase letters, English lowercase
letters, numeric characters, and special
characters. Password lifetime will not exceed 60
days Users cannot use the previous six
passwords. The system will give the user a
choice of alternative passwords from which to
choose. Passwords must be changed by the user
after initial logon.

Business Must

For this book we started collecting security and privacy requirements, since our experience
shows that all good (security) architectures and designs have similar (if not exact) the
same requirements. Within the appendix of this document a link to a reusable list of
security and privacy requirements on GitHub for reuse. We encourage everyone to share
created requirements. See the Appendix on how you can collaborate and make the next
version of this reference architecture with us.

45

Security Principles

Name
Principle

Address Privacy&Security

Statement Address Privacy & Security

Rationale

Information is power and this is certainly true in the context of technology-
enabled global development interventions. How information is collected,
stored, analysed, shared, and used has serious implications for both the
populations about whom data are being transmitted, and the organizations
transmitting the data.

Implications

 Assess and mitigate risks to the security of users and their data.

 Consider the context and needs for privacy of personally
identifiable information when designing solutions and mitigate
accordingly.

 Ensure equity and fairness in co-creation, and protect the best
interests of the end end-users.

Name
Principle

Always consider the users

Statement Always consider the users

Rationale

The security of a software system is linked to what its users do with it. It is
therefore important that all security-related mechanisms are designed in a
manner that makes it easy for users to deploy, configure, use, and update the
system securely. Security is not a feature that can simply be added to a

46

software system, but rather a property emerging from how the system was
built and is operated. The way each user interacts with software is dictated
not only by the design and implementation decisions of its creators but also
by the cognitive abilities and cultural background of its users.

Implications

Failing to address this design principle can lead to a various problems, e.g.:

 When designers don’t “remember the user” in their software
design, inadvertent disclosures by the user may take place. If it is
difficult to understand the authorization model, or difficult to
understand the configuration for visibility of data, then the user’s
data are likely to be unintentionally disclosed.

 Designers sometimes fail to account for the fact that
authenticated and properly authorized users can also be
attackers! This design error is a failure to distrust the user,
resulting in authorized users having opportunities to misuse the
system.

 When security is too hard to set up for a large population of the
system’s users, it will never be configured, or it will not be
configured properly.

Name
Principle

Asset protection and resilience

Statement Asset protection and resilience

Rationale
Consumer data, and the assets storing or processing it, should be protected
against physical tampering, loss, damage or seizure.

Implications
If this principle is not implemented, inappropriately data (e.g. user or
consumer) could be compromised which may result in legal and regulatory
sanction, or reputation damage.

47

Name
Principle

Assume that external systems are insecure

Statement Assume that external systems are insecure.

Rationale

The term information domain arises from the practice of partitioning
information resources according to access control, need, and levels of
protection required. Organizations implement specific measures to enforce
this partitioning and to provide for the flow of authorized information
between information domains. The boundary of an information domain
represents the security perimeter for that domain. An external domain is one
that is not under your control. In general, all external systems should be
considered insecure.

Implications

 Take proactive security measurements to protect secure data
crossing information boundaries.

 Design secure information exchange interfaces (api's).

 Make agreements with parties involved.

Name
Principle

Audit information provision to consumers

Statement Audit information provision to consumers

Rationale

Consumers should be provided with the audit records they need to monitor
access to their service and the data held within it. If this principle is not
implemented, consumers will not be able to detect and respond to
inappropriate or malicious use of their service or data within reasonable
time-scales. In most countries this is a legal requirement from privacy point

48

of view.

Implications
 Secure audit mechanism needed.

 Requirements needed for audit data retention, storing, archiving.

Name
Principle

Authenticate users and processes

Statement
Authenticate users and processes to ensure appropriate access control
decisions both within and across domains.

Rationale

Authentication is the process where a system establishes the validity of a
transmission, message, or a means of verifying the eligibility of an individual,
process, or machine to carry out a desired action, thereby ensuring that
security is not compromised by an untrusted source. It is essential that
adequate authentication be achieved in order to implement security policies
and achieve security goals.

Implications Authentication service needed for users and application processes.

Name
Principle

Authorize after you authenticate

Statement Authorize after you authenticate.

Rationale

Authorization should be conducted as an explicit check, and as necessary
even after an initial authentication has been completed. Authorization
depends not only on the privileges associated with an authenticated user,
but also on the context of the request. The time of the request and the

49

location of the requesting user may both need to be taken into account.

Implications

For particularly sensitive operations, authorization may need to invoke
authentication (again). Although authorization begins only after
authentication has occurred, this requirement is not circular. Authentication
is not binary—users may be required to present minimal (such as a
password) or more substantial (e.g. biometric or token-based) evidence of
their identity, and authentication in most systems is not continuous—a user
may authenticate, but walk away from the device or hand it to someone else.

Name
Principle

Avoid security by obscurity

Statement Security measurements should be open and transparent.

Rationale

 Assume attackers will have source code (also for closed source
software).

 Assume attackers will have complete design and network
topologies.

 Open security design promotes cycle of improvement faster.

 Assume sensitive information regarding security measurements
are leaked or sold.

Implications

 Do not document secrets and configuration policies (settings) in
security designs.

 Never store secrets (e.g. passwords) on systems.

 Involve internal and external SME to evaluate the strength and
weakness of a security design. (design review).

 Security should always be tested by experts (open or not).

50

 Periodically pentest the security implementation, use different
companies instead of always the same.

Name
Principle

Check the return value of functions

Statement

Check the return value of all non-void functions, and check the validity of all
function parameters. The return value of non-void functions must be
checked by each calling function, and the validity of parameters must be
checked inside each function.

Rationale

This is possibly the most frequently violated principle.In the strictest
interpretation, this rule means that even the return value of printf
statements and file close statements must be checked. A case can be made,
though, that if the response to an error would rightfully be no different than
the response to success, there is no point in checking a return value. This is
often the case with calls to printf and close. In cases like these, it can be
acceptable to explicitly cast the function return value to (void) -- thereby
indicating that the programmer explicitly and not accidentally decides to
ignore a return value. The rule is then only violated if the cast is missing. In
more dubious cases, a comment should be present to explain why a return
value is irrelevant. In most cases, though, the return value of a function
should not be ignored, especially if error return values must be propagated
up the function call chain. Standard libraries famously violate this rule with
potentially grave consequences. See, for instance, what happens if you
accidentally execute strlen(0), or strcat(s1, s2, -1) with the standard C string
library. For this reason, most coding guidelines for safety critical software
also forbid the use of all ansi standard headers like string.h, stdlib.h, stdio.h
etc. If the function are needed, they should be written separately, and made
compliant with safety critical use. The enforcement of this principle make
sure that exceptions are always explicitly justified (and justifiable), with
mechanical checkers flagging violations. Often, it will be easier to comply
with the rule than to explain why non-compliance is acceptable.

Implications  Extra testing and programming effort:Function parameters
should normal be verified for validity before being used. This rule

51

especially applies to pointers: before dereferencing a pointer that
is passed as a parameter the pointer must be checked for null.

 Consider automating security testing on software (static and
dynamic tests)

Name
Principle

Clearly delineate the physical and logical security boundaries

Statement
Clearly delineate the physical and logical security boundaries governed by
associated security policies.

Rationale

Information technology exists in physical and logical locations, and
boundaries exist between these locations. An understanding of what is to be
protected from external factors can help ensure adequate protective
measures are applied where they will be most effective. Sometimes a
boundary is defined by people, information, and information technology
associated with one physical location.

Implications Create a security architecture or design.

Name
Principle

Compartmentalise

Statement
Sub-systems will be partitioned logically and isolated using physical devices
and/or security controls.

Rationale
In accordance with the minimise attack surface and Defence in Depth
principles, this compartmentalise principle keeps a sub-system, or logically
grouped set of sub-systems, relatively self-contained such that compromise

52

of one will not imply the compromise of another.

Implications

 Use defence in depth security principles in the security
architecture.

 Sourcing of (sub)systems is easily possible when this principles is
implemented correctly.

 Eliminate or minimize dependencies between subsystems. This
can result in using other (generic) security services like a
separate identification or authentication service.

Name
Principle

Compile with all warnings enabled

Statement

Compile with all warnings enabled, in pedantic mode, and use one or more
modern static source code analyzers. All code must be compiled, from the
first day of development, with all compiler warnings enabled at the
compiler's most pedantic setting. All code must compile with these setting
without warnings. All code must be checked on each build with at least one,
but preferably more than one, state-of-the-art static source code analyzer
and should pass the analyses with zero warnings.

Rationale

There are several very effective static source code analyzers on the market
today, and quite a few freeware tools as well. There is no excuse for any
serious software development effort not to make use of this technology. It
should be considered routine practice, especially for critical software
development. The rule of zero warnings applies even in cases where the
compiler or the static analyzer gives an erroneous warning: if the compiler
or the static analyzer gets confused, the code causing the confusion should
be rewritten so that it becomes more trivially valid. Many have been caught
in the assumption that a warning was likely invalid, only to realize much
later that the report was in fact valid for less obvious reasons. Static
analyzers originally had a bad reputation due to the limited capabilities of
early versions (e.g., the early Unix tool lint). The early tools produced mostly
invalid messages, but this is not the case for the current generation of

53

commercial tools. The best static analyzers today are fast, and they produce
selective and accurate messages.

Implications Provide awareness trainings of developers continuously.

Name
Principle

Complete mediation

Statement Complete mediation

Rationale

Access rights are completely validated every time an access occurs. Systems
should rely as little as possible on access decisions retrieved from a cache.
Again, file permissions tend to reflect this model: the operating system
checks the user requesting access against the file’s ACL. The technique is less
evident when applied to email, which must pass through separately applied
packet filters, virus filters, and spam detectors.

Implications

 Document decisions regarding use of cached data for security
services.

 Usability aspects should be taken into account with setting cache
invalidation timers.

Name
Principle

Computer security is constrained by societal factors

Statement Computer Security is Constrained by Societal Factors.

Rationale The ability of security to support the mission of an organization may be
limited by various factors, such as social issues. For example, security and

54

workplace privacy can conflict. Commonly, security is implemented on an IT
system by identifying users and tracking their actions. However,
expectations of privacy vary and can be violated by some security measures.
(In some cases, privacy may be mandated by law.)

Implications

 User awareness campaigns should be included in the security
processes on regular basis.

 IT security measurements are a part of the total security system.
Organization processes and policies are of great importance.

Name
Principle

Computer Security Requires a Comprehensive and Integrated
Approach

Statement Computer Security Requires a Comprehensive and Integrated Approach

Rationale

Providing effective computer security requires a comprehensive approach
that considers a variety of areas both within and outside of the computer
security field. This comprehensive approach extends throughout the entire
information life cycle. To work effectively, security controls often depend
upon the proper functioning of other controls. Many such interdependencies
exist. If appropriately chosen, managerial, operational,and technical controls
can work together synergistically.

Implications

The effectiveness of security controls (also) depends on such factors as
system management, legal issues, quality assurance, and internal and
management controls. Computer security needs to work with traditional
security disciplines including physical and personnel security.

Name Computer Security Responsibilities and Accountability Should Be Made

55

Principle Explicit

Statement
Computer Security Responsibilities and Accountability Should Be Made
Explicit

Rationale

The responsibility and accountability3 of owners, providers, and users of IT
systems and other parties4 concerned with the security of IT systems should
be explicit.5 The assignment of responsibilities may be internal to an
organization or may extend across organizational boundaries.

Implications

Depending on the size of the organization, the computer security program
may be large or small, even a collateral duty of another management official.
However, even small organizations can prepare a document that states
organization policy and makes explicit computer security responsibilities.

Name
Principle

Computer Security Should Be Cost-Effective

Statement Computer Security Should Be Cost-Effective.

Rationale

The costs and benefits of security should be carefully examined in both
monetary and nonmonetary terms to ensure that the cost of controls does
not exceed expected benefits. Security should be appropriate and
proportionate to the value of and degree of reliance on the IT systems and to
the severity, probability, and extent of potential harm. Requirements for
security vary, depending upon the particular IT system.

Implications

 Calculated the cost of damage against security measurements.

 Take notice of legal boundaries possible and lawsuits possible
(for liability) if no adequate security measurements are taken.

 Consider using proven generic OSS security services when
applicable.

56

Name
Principle

Computer Security should be periodically reassessed

Statement Computer Security Should Be Periodically reassessed

Rationale

Computers and the environments in which they operate are dynamic. System
technology and users, data and information in the systems, risks associated
with the system, and security requirements are ever-changing. Many types of
changes affect system security: technological developments (whether
adopted by the system owner or available for use by others); connection to
external networks; a change in the value or use of information; or the
emergence of a new threat. In addition, security is never perfect when a
system is implemented.

Implications Implement security audits and pentest with your security control processes.

Name
Principle

Computer Security Supports the Mission of the Organization

Statement Computer Security Supports the Mission of the Organization.

Rationale

The purpose of computer security is to protect an organization's valuable
resources, such as information, hardware, and software. Through the
selection and application of appropriate safeguards, security helps the
organization's mission by protecting its physical and financial resources,
reputation, legal position, employees, and other tangible and intangible
assets.

Implications
IT Security should like all other IT services enable to business to run their
processes. So an enabling service and not a disabler service.

57

Name
Principle

Data in transit protection

Statement Data in transit protection

Rationale
Consumer data transiting networks should be adequately protected against
tampering and eavesdropping via a combination of network protection and
encryption.

Implications
If this principle is not implemented, then the integrity or confidentiality of
the data may be compromised whilst in transit.

Name
Principle

Data is always protected

Statement

Data is protected from unauthorized use and disclosure. In addition to the
traditional aspects of data classification, this includes, but is not limited to,
protection of per-decisional, sensitive, source selection-sensitive, and
proprietary information.

Rationale

Open sharing of information and the release of information via relevant
legislation must be balanced against the need to restrict the availability of
classified, proprietary, and sensitive information. Existing laws and
regulations require the safeguarding of security and the privacy of data,
while permitting free and open access.

Implications

Aggregation of data, both classified and not, will create a large target
requiring review and de-classification procedures to maintain appropriate
control. Access to information based on a need-to-know policy will force
regular reviews of the body of information. Security needs must be identified

58

and developed at the data level, not the application level. Data security
safeguards can be put in place to restrict access to "view only", or "never
see". Sensitivity labelling of data for access to pre-decisional, decisional,
classified, sensitive, or proprietary information must be determined.
Security must be designed into data elements from the beginning; it cannot
be added later. Systems, data, and technologies must be protected from
unauthorized access and manipulation. Headquarters information must be
safeguarded against inadvertent or unauthorized alteration, sabotage,
disaster, or disclosure.

Name
Principle

Declare data objects at the smallest possible level of scope

Statement Declare data objects at the smallest possible level of scope.

Rationale

Basic principle of data-hiding. Clearly if an object is not in scope, its value
cannot be referenced or corrupted. Similarly, if an erroneous value of an
object has to be diagnosed, the fewer the number of statements where the
value could have been assigned; the easier it is to diagnose the problem. The
rule discourages the re-use of variables for multiple, incompatible purposes,
which can complicate fault diagnosis.

Implications

Data should always be declared at the start of the scope in which it is used:
for file scope, the declarations go at the top of the source file (never in a
header file); for function scope, the declaration goes at the top of the
function body; for block scope, at the start of the block. This means that
declarations should not be placed at random places in the code, e.g., that the
point of first use. Data objects only used in one file should be declared file
static.

Name Defense in depth

59

Principle

Statement Defense in depth should be a key architecture and design principle.

Rationale
Multi-layered security controls and practices are better than single defense
layer.

Implications

 Do not trust on security measurements from preceding
functions.

 Prepare for the worst possible scenario.

 Implement multiple defence mechanism.

 Create a security architecture or design and document the
different layers of protection.

 If one security service fails, the security system should still be
resistant against threads.

 Compartmentalize and work with secure boundaries for
information flows.

Name
Principle

Design and implement audit mechanisms

Statement
Design and implement audit mechanisms to detect unauthorized use and to
support incident investigations.

Rationale

Organizations should monitor, record, and periodically review audit logs to
identify unauthorized use and to ensure system resources are functioning
properly. In some cases, organizations may be required to disclose
information obtained through auditing mechanisms to appropriate third
parties.

60

Implications

 Audit logs must be protected against manipulation.
(online/offline).

 All audit records should have a correct time stamp.

 Unified time service is needed for a secure audit service.

 Integrity of the audit system must be implemented.

Name
Principle

Design and operate an IT system to limit damage and to be resilient in
response.

Statement
Design and operate an IT system to limit damage and to be resilient in
response.

Rationale

Information systems should be resistant to attack, should limit damage, and
should recover rapidly when attacks do occur. The principle suggested here
recognizes the need for adequate protection technologies at all levels to
ensure that any potential cyber attack will be countered effectively.

Implications
 Defence in depth measurement

 Compartmentalize IT building blocks.

Name
Principle

Design for secure updates

Statement Design for secure updates

61

Rationale

All updates for a system must be verified. The source of the update must be
known and the integrity must be verified. It is easier to upgrade small pieces
of a system than huge blobs. Doing so ensures that the security implications
of the upgrade are well understood and controlled.

Implications

 Verify the integrity and provenance of upgrade packages.

 Make use of code signing and signed manifests to ensure that the
system only consumes patches and updates of trusted origin. E.g.
use secure hashing (sha).

Name
Principle

Design for security properties changing over time

Statement Design for security properties changing over time

Rationale
The migration of previous users (and/or the correct coexistence of the local
and remote users) would need to happen in a way that does not
compromise security.

Implications Make security design modular and flexible from the start.

Name
Principle

Design reviews

Statement
All architectures and designs must be reviewed. Minimal on security aspects
and potential risks. Also to determine if all (security and privacy) principles
and requirements are followed.

62

Rationale

Integrating security into the design phase saves money and time. Conduct a
risk review with security professionals and threat model the application to
identify key risks and to improve product and processes under development.
This helps you integrate appropriate countermeasures into the design and
architecture of the application. Improving architecture and design is by far
the best option (time,cost etc) for dealing with security and privacy.

Implications
Organize or make use of a structured review process to benefit from review.
SME (Subject Matter Experts) must be available for doing reviews. Reserve
time to improve architectures and designs or to improve code.

Name
Principle

Design security to allow for regular adoption of new technology

Statement
Design security to allow for regular adoption of new technology, including a
secure and logical technology upgrade process.

Rationale

As mission and business processes and the threat environment change,
security requirements and technical protection methods must be updated.
IT-related risks to the mission/business vary over time and undergo
periodic assessment.

Implications

Name
Principle

Develop and exercise contingency or disaster recovery procedures to
ensure appropriate availability

Statement
Develop and exercise contingency or disaster recovery procedures to ensure
appropriate availability

63

Rationale
Continuity of operations plans or disaster recovery procedures address
continuance of an organization’s operation in the event of a disaster or
prolonged service interruption that affects the organization’s mission.

Implications

Name
Principle

Do not implement unnecessary security mechanisms.

Statement Do not implement unnecessary security mechanisms.

Rationale

Every security mechanism should support a security service or set of
services, and every security service should support one or more security
goals. Extra measures should not be implemented if they do not support a
recognized service or security goal. Such mechanisms could add unneeded
complexity to the system and are potential sources of additional
vulnerabilities.

Implications Only implement security measurements when needed.

Name
Principle

Don’t trust infrastructure

Statement Underlaying infrastructure cannot be assumed safe.

Rationale
Vulnerabilities are at hardware,firmwire, virtualization, middleware and
application layers. To minimize data leakage risks trusting security of other
objects should be prevented.

64

Implications Sandbox model /Jericho model needed. Layered defense easily possible

Name
Principle

Don’t trust services (from others)

Statement
Services from others (departments, companies) should never (ever) be
trusted.

Rationale
Security design should protect against services use of other layers or
applications (also SAAS services). Systems or sub-systems outside the
bounds of a receiving component must never be trusted implicitly.

Implications

Every input/output and given by external services must be validated.
Authentication, authorization can be needed. Measurements to maintain
availability when using services (input or output) requires strict
measurements implemented.

Name
Principle

Earn or give, but never assume or trust

Statement Earn or give, but never assume or trust

Rationale

Offloading security functions from server to client exposes those functions to
a much less trustworthy environment, which is one of the most common
causes of security failures predicated on misplaced trust. Designs that place
authorization, access control,enforcement of security policy, or embedded
sensitive data in client software thinking that it won’t be discovered,
modified, or exposed by clever users or malicious attackers are inherently
weak. Such designs will often lead to compromises.

65

Implications

 Make sure all data received from an untrusted client are properly
validated before processing.

 When designing your systems, be sure to consider the context
where code will be executed, where data will go, and where data
entering your system comes from.

Name
Principle

Economy of mechanism

Statement A simple design is easier to test and validate.

Rationale

Keep it simple to avoid risk. More is not always better. This means more
components, more processes and more security measurements involved.
One factor in evaluating a system's security is its complexity. If the design,
implementation, or security mechanisms are highly complex, then the
likelihood of security vulnerabilities increases. Simpler means less can go
wrong. This well-known principle applies to any aspect of a system, but it
deserves emphasis for protection mechanisms for this reason: design and
implementation errors that result in unwanted access paths will not be
noticed during normal use (since normal use usually does not include
attempts to exercise improper access paths).

Implications Avoid complexity.

Name
Principle

Ensure proper security in the shutdown or disposal of a system

Statement Ensure proper security in the shutdown or disposal of a system

66

Rationale

Although a system may be powered down, critical information still resides
on the system and could be retrieved by an unauthorized user or
organization. Access to critical information systems must be controlled at all
times.

Implications

 At the end of a system’s life-cycle, system designers should
develop / design procedures to dispose of an information
system’s assets in a proper and secure fashion.

 Procedures must be implemented to ensure system hard drives,
volatile memory, and other media are purged to an acceptable
level and do not retain residual information.

Name
Principle

Ensure that developers are trained in how to develop secure software.

Statement Ensure that developers are trained in how to develop secure software.

Rationale

It is unwise to assume that developers know how to develop secure
software. Therefore, ensure that developers are adequately trained in the
development of secure software before developing the system. This includes
application of engineering disciplines to design, development, configuration
control, and integration and testing.

Implications
Training cost (permanent) for all staff involved in maintaining the IT assets
of a company.

Name
Principle

Establish a sound security policy as the“foundation” for design.

67

Statement Establish a sound security policy as the “foundation” for design.

Rationale

A security policy is an important document to develop while designing an
information system. The security policy begins with the organization’s basic
commitment to information security formulated as a general policy
statement. The policy is then applied to all aspects of the system design or
security solution. The policy identifies security goals (e.g., confidentiality,
integrity, availability, accountability, and assurance) the system should
support, and these goals guide the procedures, standards and controls used
in the IT security architecture design. The policy also should require
definition of critical assets, the perceived threat, and security-related roles
and responsibilities.

Implications
A security architecture or security design should be based on requirements
that are derived from the policies defined or directly of the policies.

Name
Principle

Establish secure defaults

Statement
Establish secure defaults when system goes in error or exception status, or
at default start-up.

Rationale Secure defaults lower the risk of bad configurations.

Implications

 Security design principles and requirements must be
implemented at first release.

 Installation of software without safe defaults is not possible.

 Secure defaults must be determined and configured.

 Secure defaults must be regularly tested

68

Name
Principle

External interface protection

Statement External interface protection

Rationale

All external or less trusted interfaces of the service should be identified and
have appropriate protections to defend against attacks through them. If this
principle is not implemented, interfaces could be subverted by attackers in
order to gain access to the service or data within it.

Implications

Name
Principle

Fail Safe Defaults

Statement Fail Safe Defaults

Rationale
A mechanism that, in the event of failure, responds in a way that will cause
no harm, or at least a minimum of harm, to other devices or danger to
personnel.

Implications

 Stress under load and hard failure situations must be
incorporated in the security test suite.

 Default system configuration at start-up is secure.

69

Name
Principle

Fail-safe default settings for security and access

Statement
Fail-safe default settings for security and access. So in case of error security
should not be compromised.

Rationale

In computing systems, the save default is generally “no access” so that the
system must specifically grant access to resources. Most file access
permissions work this way, though Windows also provides a “deny” right.
Windows access control list (ACL) settings may be inherited, and the “deny”
right gives the user an easy way to revoke a right granted through
inheritance. However, this also illustrates why “default deny” is easier to
understand and implement, since it’s harder to interpret a mixture of
“permit” and “deny” rights.

Implications

Name
Principle

Formulate security measures to address multiple overlapping
information domains

Statement
Formulate security measures to address multiple overlapping information
domains.

Rationale

An information domain is a set of active entities (person, process, or devices)
and their data objects. A single information domain may be subject to
multiple security policies. A single security policy may span multiple
information domains. An efficient and cost effective security capability
should be able to enforce multiple security policies to protect multiple
information domains without the need to separate (physically or logically)
the information and respective information systems processing the data.

Implications

70

Name
Principle

Governance framework

Statement A Governance framework is required for service providers of Cloud hosting.

Rationale

The service provider should have a security governance framework that
coordinates and directs their overall approach to the management of the
service and information within it. If this principle is not implemented, any
procedural, personnel, physical and technical controls in place will not
remain effective when responding to changes in the service and to threat
and technology developments.

Implications

Name
Principle

HTTP header use

Statement HTTP header information is not relied on to make security decisions.

Rationale HTTP headers can be manipulated very easily.

Implications
Test if software does not make security decisions based on HTTP headers.
Perform e.g. security tests with manipulated headers.

Name Identify and prevent common errors and vulnerabilities

71

Principle

Statement Identify and prevent common errors and vulnerabilities

Rationale

Many errors reoccur with disturbing regularity - errors such as buffer
overflows, race conditions, format string errors, failing to check input for
validity, and programs being given excessive privileges. Learning from the
past will improve future results.

Implications
Use OWASP top 10 checklist Use proven security test tools that are regular
updated.

Name
Principle

Identify potential trade-offs

Statement
Identify potential trade-offs between reducing risk and increased costs and
decrease in other aspects of operational effectiveness.

Rationale

To meet stated security requirements, a systems designer, architect, or
security practitioner will need to identify and address all competing
operational needs. It may be necessary to modify or adjust (i.e., trade-off)
security goals due to other operational requirements. In modifying or
adjusting security goals, an acceptance of greater risk and cost may be
inevitable.

Implications
Document all relevant design decisions within a maintained security
architecture or design document.

Name Identity and authentication

72

Principle

Statement Identity and authentication

Rationale

Access to all service interfaces (for consumers and providers) should be
constrained to authenticated and authorised individuals. If this principle is
not implemented, unauthorised changes to a consumer’s service, theft or
modification of data, or denial of service may occur.

Implications

Name
Principle

Implement layered security (Ensure no single point of vulnerability).

Statement Implement layered security (Ensure no single point of vulnerability).

Rationale

Security designs should consider a layered approach to address or protect
against a specific threat or to reduce vulnerability. For example, the use of a
packet-filtering router in conjunction with an application gateway and an
intrusion detection system combine to increase the work-factor an attacker
must expend to successfully attack the system.

Implications

Name
Principle

Implement least privilege

Statement Implement least privilege.

73

Rationale

The concept of limiting access, or "least privilege," is simply to provide no
more authorizations than necessary to perform required functions. This is
perhaps most often applied in the administration of the system. Its goal is to
reduce risk by limiting the number of people with access to critical system
security controls; i.e., controlling who is allowed to enable or disable system
security features or change the privileges of users or programs. Best practice
suggests it is better to have several administrators with limited access to
security resources rather than one person with "super user" permissions.

Implications

Name
Principle

Implement tailored system security measures to meet organizational
security goals.

Statement
Implement tailored system security measures to meet organizational
security goals.

Rationale

In general, IT security measures are tailored according to an organization’s
unique needs. While numerous factors, such as the overriding mission
requirements, and guidance, are to be considered, the fundamental issue is
the protection of the mission or business from IT security related, negative
impacts.

Implications

Name
Principle

Isolate public access systems from mission critical resources

Statement Isolate public access systems from mission critical resources (e.g., data,

74

processes, etc.).

Rationale

While the trend toward shared infrastructure has considerable merit in
many cases, it is not universally applicable. In cases where the sensitivity or
criticality of the information is high, organizations may want to limit the
number of systems on which that data is stored and isolate them, either
physically or logically. Physical isolation may include ensuring that no
physical connection exists between an organization’s public access
information resources and an organization’s critical information. When
implementing logical isolation solutions, layers of security services and
mechanisms should be established between public systems and secure
systems responsible for protecting mission critical resources.

Implications
Isolation measurements must be tested regularly. An audit report from a
third party is required (in case of cloud sourcing).

Name
Principle

Least common mechanism

Statement Least common mechanism

Rationale
Users should not share system mechanisms except when absolutely
necessary, because shared mechanisms may provide unintended
communication paths or means of interference.

Implications

Name
Principle

Least privilege

75

Statement Least privilege

Rationale

Every program and user should operate while invoking as few privileges as
possible. This is the rationale behind Unix “sudo” and Windows User
Account Control, both of which allow a user to apply administrative rights
temporarily to perform a privileged task.

Implications
This principle has impact on the system, software components, but also on
procedures used.

Name
Principle

Limit the use of pointers

Statement

Limit the use of pointers. Use no more than N levels of dereferencing (star
operators) per expression. A strict value for N=1, but in some cases using
N=2 can be justified. Pointer dereference operations may not be hidden in
macro definitions or inside typedef declarations. The use of function
pointers should be restricted to simple cases.

Rationale

Pointers are easily misused, even by experienced programmers. They can
make it hard to follow or analyze the flow of data in a program, especially by
tool-based static analyzers. Function pointers, similarly, can seriously
restrict the types of checks that can be performed by static analyzers and
should only be used if there is a strong justification for their use, and ideally
alternate means are provided to assist tool-based checkers determine flow
of control and function call hierarchies. For instance, if function pointers are
used, it can become impossible for a tool to prove absence of recursion, so
alternate guarantees would have to be provided to make up for this loss in
analytical capabilities.

Implications

It should be possible for a static analyzer to determine in all cases which
function is being called, if the call is made through a function pointer. It may
be acceptable to allow cases where the number of possible functions that
may be called is larger than one, provided it does not affect the precision of

76

the code analysis itself. This means that it can depend on the capabilities of a
specific static analyzer what liberties can be taken with the use of function
pointers. Additionally, though, it is wise to keep function pointer use to a
minimum, and to restrict to simple cases, to make sure that also humans can
determine accurately and with modest effort which functions may be
evoked.

Name
Principle

Limit the use of the preprocessor to file inclusion and simple macros

Statement

Limit the use of the preprocessor to file inclusion and simple macros. The
use of the preprocessor must be limited to the inclusion of header files and
simple macro definitions. Token pasting, variable argument lists (ellipses),
and recursive macro calls are not permitted. All macros must expand into
complete syntactic units. The use of conditional compilation directives
should be restricted to the prevention of duplicate file inclusion in header
files.

Rationale

The C preprocessor is a powerful obfuscation tool that can destroy code
clarity and befuddle many text based checkers. The effect of constructs in
unrestricted preprocessor code can be extremely hard to decipher, even
with a formal language definition in hand. In a new implementation of the C
preprocessor, developers often have to resort to using earlier
implementations as the referee for interpreting complex defining language
in the C standard. The rationale for the caution against conditional
compilation is equally important. Note that with just ten conditional
compilation directives, there could be up to 2^10 (i.e., 1024) possible
versions of the code, each of which would have to be tested -- causing a
significant increase in the required test effort.

Implications

Macros should only appear in header files, never in the source code itself.
The #undef directive should not be used. Macros should never hide
declarations, and they should not hide pointer dereference operations from
the code. Macros should also never be used to redefine the language. The
restriction of macro definitions to the definition of complete syntactic units
means that all macro bodies must be enclosed in either round or curly

77

braces. Compiler directives There should not be more #ifdef directives in a
code base than there are headerfiles. Each use of compilation directives
(other than the duplicate file inclusion prevention use) should be flagged by
a tool-based checker and justified with a comment in the code.

Name
Principle

Logging secrets

Statement Private data (for example, passwords) is not logged.

Rationale Protecting secure logs is expensive.

Implications
A clear message level must be built in to notify exactly what the cause of
error is. Reduced risk profile on system logs.

Name
Principle

Minimize secrets

Statement Minimize secrets

Rationale

Secrets should be few and changeable, but they should also maximize
entropy, and thus increase the attacker’s work factor. The simple principle is
also true by itself, since each secret increases a system’s administrative
burden.

Implications

78

Name
Principle

Minimize the system elements to be trusted.

Statement Minimize the system elements to be trusted.

Rationale

Security measures include people, operations, and technology. Where
technology is used, hardware, firmware, and software should be designed
and implemented so that a minimum number of system elements need to be
trusted in order to maintain protection.

Implications

Name
Principle

Open design

Statement
Open design. The security of physical products, machines and systems
should not depend on secrecy of the design and implementation.

Rationale

Baran (1964) argued persuasively in an unclassified RAND report that
secure systems, including cryptographic systems, should have unclassified
designs. This reflects recommendations by Kerckhoffs (1883) as well as
Shannon’s maxim: “The enemy knows the system” (Shannon, 1948). Even
the NSA, which resisted open crypto designs for decades, now uses the
Advanced Encryption Standard to encrypt classified information.

Implications

Name Operational security

79

Principle

Statement Operational security

Rationale

The service provider should have processes and procedures in place to
ensure the operational security of the service. processes and procedures in
place to ensure the operational security of the service. If this principle is not
implemented, the service can’t be operated and managed securely in order
to impede, detect or prevent attacks against it.

Implications

Name
Principle

Personnel security

Statement Personnel security

Rationale

Service provider staff should be subject to personnel security screening and
security education for their role. If this principle is not implemented, the
likelihood of accidental or malicious compromise of consumer data by
service provider personnel is increased.

Implications

Name
Principle

Protect information while being processed, in transit, and in storage.

Statement Protect information while being processed, in transit, and in storage.

80

Rationale

The risk of unauthorized modification or destruction of data, disclosure of
information, and denial of access to data while in transit should be
considered along with the risks associated with data that is in storage or
being processed. Therefore, system engineers, architects, and IT specialists
should implement security measures to preserve, as needed, the integrity,
confidentiality, and availability of data, including application software, while
the information is being processed, in transit, and in storage.

Implications

Name
Principle

Provide assurance that the system is, and continues to be, resilient in
the face of expected threats.

Statement
Provide assurance that the system is, and continues to be, resilient in the
face of expected threats.

Rationale

Assurance is the grounds for confidence that a system meets its security
expectations. These expectations can typically be summarized as providing
sufficient resistance to both direct penetration and attempts to circumvent
security controls. Good understanding of the threat environment, evaluation
of requirement sets, hardware and software engineering disciplines, and
product and system evaluations are primary measures used to achieve
assurance. Additionally, the documentation of the specific and evolving
threats is important in making timely adjustments in applied security and
strategically supporting incremental security enhancements.

Implications Security testing must be planned and performed on regular basis.

Name Psychological acceptability

81

Principle

Statement Psychological acceptability

Rationale
This principle essentially requires the policy interface to reflect the user’s
mental model of protection, and notes that users won’t specify protections
correctly if the specification style doesn’t make sense to them.

Implications

Name
Principle

Reduce risk to an acceptable level.

Statement Reduce risk to an acceptable level.

Rationale

Risk is defined as the combination of (1) the likelihood that a particular
threat source will exercise (intentionally exploit or unintentionally trigger) a
particular information system vulnerability and (2) the resulting adverse
impact on organizational operations, organizational assets, or individuals
should this occur.

Implications

Name
Principle

Risk Based Approach to Security

Statement
Ensure that risks to confidentiality, integrity, and availability of information
and technology systems are treated in a consistent and effective manner.

82

Rationale

Risk is the chance of something happening that will have an impact on
company objectives and risk assessment is the overall process of risk
identification, analysis, evaluation, and mitigation.

 Taking a risk based approach allows for the: better identification
of threats to our projects and initiatives,

 more effective allocation and use of resources to manage those
risks, and

 improved stakeholder confidence and trust as we better manage
information and business risk.

Implications

The level and cost of information security controls to manage confidentiality,
integrity, and availability risk must be appropriate and proportionate to the
value of the information assets and the potential severity, probability, and
extent of harm. Risks must identified so we are aware of what risks can
occur, what existing controls are in place, the consequence and likelihood of
the risk occurring, and a determination is made about how to treat those
risks.

 Options for addressing information risk should be reviewed so
that informed and documented decisions are made about the
treatment of risk. Risk treatment involves choosing one or more
options, which typically include: Accepting risk (by an
appropriate team member signing off that he/she has accepted
the risk and no further action is required)

 Avoiding risk (by an appropriate team member deciding not to
pursue a particular initiative)

 Transferring risk (by an appropriate team member to an external
entity such as insurance)

 Mitigating risk (by an appropriate team member by applying
appropriate information security measures, e.g., access controls,
network monitoring and incident management)

83

Name
Principle

Secure use of the service by the consumer

Statement Secure use of the service by the consumer

Rationale

Consumers have certain responsibilities when using a cloud service in order
for this use to remain secure, and for their data to be adequately protected. If
this principle is not implemented, the security of cloud services and the data
held within them can be undermined by poor use of the service by
consumers.

Implications

Name
Principle

Security by Design

Statement

Controls for the protection of confidentiality, integrity, and availability
should be designed into all aspects of solutions from initiation, not as an
afterthought. Security should also be designed into the business processes
within which an IT system will be used.

Rationale

The implementation of protections for confidentiality, availability and
integrity within information and systems at the end of a project is more
expensive than including the security protections within the initial design of
the project. Controls implemented at the end of a project are often less
efficient and less integrated than those integrated within the core of the
project.

Implications

 Security is designed in as an integrated part of the system
architecture, not added as an afterthought.

 Security mechanisms must span all tiers of the architecture, and
must be scalable.

84

 All solutions, custom or commercial, must be tested for security.

 Possible areas of control which could be addressed and
integrated include (but are not limited to): asset management
and information classification; physical security; segregation of
duties, protections against malicious code; backup; exchange of
information; logging and monitoring; user access management;
technical vulnerability management; compliance with legal
requirements; and, information systems audit considerations.

Name
Principle

Sensitive Data

Statement Secrets are not stored in code.

Rationale Storing secrets involves risk at all times.

Implications
Software code must be scanned on secrets (e.g. configuration details,
passwords)

Name
Principle

Sensitive data must be identified

Statement
Sensitive data must be identified and it should be defined how the data is
handled.

Rationale

Data sets do not exist only at rest, but in transit between components within
a single system and between organizations. As data sets transit between
systems, they may cross multiple trust boundaries. Identifying these
boundaries and rectifying them with data protection policies is an essential
design activity. Trust is just as tricky as data sensitivity, and the notion of

85

trust enclaves is likely to dominate security conversations in the next
decade.

Implications

Policy requirements and data sensitivity can change over time as the
business climate evolves, as regulatory regimes change, as systems become
increasingly interconnected, and as new data sources are incorporated into a
system. Regularly revisiting and revising data protection policies and their
design implications is essential.

Name
Principle

Separation between consumers

Statement Separation between consumers

Rationale

Separation should exist between different consumers of the service to
prevent one malicious or compromised consumer from affecting the service
or data of another.If this principle is not implemented, service providers
cannot prevent a consumer of the service affecting the confidentiality or
integrity of another consumer’s data or service.

Implications
Sharing services between customers by Cloud Service Providers (CSP's)
requires strict separation within the security model.

Name
Principle

Separation of privilege

Statement Separation of privilege

Rationale A protection mechanism is more flexible if it requires two separate keys to
unlock it, allowing for two-person control and similar techniques to prevent

86

unilateral action by a subverted individual. The classic examples include dual
keys for safety deposit boxes and the two-person control applied to nuclear
weapons and Top Secret crypto materials. A protection mechanism is more
flexible if it requires two separate keys to unlock it, allowing for two-person
control and similar techniques to prevent unilateral action by a subverted
individual. The classic examples include dual keys for safety deposit boxes
and the two-person control applied to nuclear weapons and Top Secret
crypto materials. Separation of privilege gives better data protection for
internal fraud or internal hacks.

Implications

 Security procedures are needed.

 Business Continuity and Disaster Recovery involve more effort.

 Reaction time in case of an incident can be reduced.

Name Principle Session lifetime

Statement Session lifetime is limited. Also for cookies.

Rationale Security System performance

Implications All transactions must be completed within max session time.

Name
Principle

Strive for operational ease of use.

Statement Strive for operational ease of use.

87

Rationale

The more difficult it is to maintain and operate a security control, the less
effective that control is likely to be. Therefore, security controls should be
designed to be consistent with the concept of operations and with ease-of-
use as an important consideration.

Implications

Name
Principle

Strive for simplicity

Statement Strive for simplicity

Rationale

The more complex the mechanism, the more likely it may possess
exploitable flaws. Simple mechanisms tend to have fewer exploitable flaws
and require less maintenance. Further, because configuration management
issues are simplified, updating or replacing a simple mechanism becomes a
less intensive process.

Implications

Name
Principle

Supply chain security

Statement Supply chain security

Rationale

The service provider should ensure that its supply chain satisfactorily
supports all of the security principles that the service claims to implement. If
this principle is not implemented, it is possible that supply chain
compromise can undermine the security of the service and affect the

88

implementation of other security principles.

Implications

Name
Principle

Systems Owners Have Security Responsibilities Outside Their Own
Organizations

Statement
Systems Owners Have Security Responsibilities Outside Their Own
Organizations

Rationale

If a system has external users, its owners have a responsibility to share
appropriate knowledge about the existence and general extent of security
measures so that other users can be confident that the system is adequately
secure. This does not imply that all systems must meet any minimum level of
security, but does imply that system owners should inform their clients or
users about the nature of the security.

Implications
Managers "should act in a timely, coordinated manner to prevent and to
respond to breaches of security" to help prevent damage to others.2
However, taking such action should not jeopardize the security of systems.

Name
Principle

Treat security as an integral part of the overall system design.

Statement Treat security as an integral part of the overall system design.

Rationale

Security must be considered in information system design. Experience has
shown it to be both difficult and costly to implement security measures
properly and successfully after a system has been developed, so it should be
integrated fully into the system life-cycle process. This includes establishing

89

security policies, understanding the resulting security requirements,
participating in the evaluation of security products, and finally in the
engineering, design, implementation, and disposal of the system.

Implications

Name
Principle

Use an authentication mechanism that cannot be bypassed

Statement Use a authentication mechanism that cannot be bypassed or tampered with.

Rationale
The ability to bypass an authentication mechanism can result in an
unauthorized entity having access to a system or service that it shouldn’t.

Implications

 It’s preferable to have a single method, component, or system
responsible for authenticating users. Such a single mechanism
can serve as a logical “choke point” that cannot be bypassed.

 Much as in code reuse, once a single mechanism has been
determined to be correct, it makes sense to leverage it for all
authentication.

Name
Principle

Use only Secure Protocols

Statement
Only inherently secure protocols should be used. The protocol should not
encapsulate another insecure protocol (IPSec / VPN etc.) The protocol
should be capable of authenticating itself

90

Rationale Insecure protocols introduce security risks than can be easily avoided.

Implications
Insecure Protocols (http for example) Only used where interaction with
non-trusted environment essential. Protocol must be validated against
application

Name
Principle

Use standard solutions

Statement Existing security controls should be given preference over custom solutions

Rationale

Secure software is hard. The largest, most experienced and deep pocketed
software developers in the world, both commercial and open source, are
constantly patching security vulnerabilities in software that has been in the
wild and hardened over many years. It is arguably implausible for
developers of a particular system to invent and deliver a security solution
that is as good as or better than an off-the-shelf solution. Add to that the
need to fully and clearly document how the custom security solution works
for maintainers of the software and new developers to comprehend,
maintain and extend the solution and the cost of training up those resources.

Implications

Name
Principle

Use unique identities to ensure accountability

Statement Use unique identities to ensure accountability

91

Rationale

An identity may represent an actual user or a process with its own identity,
e.g., a program making a remote access. Unique identities are a required
element in order to be able to:

 Maintain accountability and traceability of a user or process

 Assign specific rights to an individual user or process

 Provide for non-repudiation

 Enforce access control decisions

 Establish the identity of a peer in a secure communications path

 Prevent unauthorized users from masquerading as an authorized
user.

Implications

Name
Principle

Where possible, base security on open standards for portability and
interoperability.

Statement
Where possible, base security on open standards for portability and
interoperability.

Rationale

For security capabilities to be effective security program designers should
make every effort to incorporate interoperability and portability into all
security measures, including hardware and software, and implementation
practices. In practice an open interface in OSS software (good documented)
can be a good alternative to an open standard that lacks solid reference
implementations and gives room to different ways of implementing external
behaviour.

Implications  No all Commercial-off-the-shelf (COTS) software is usable.

92

 OSS solutions should provide open interfaces.

93

Privacy Principles

Name
Principle

Access to Personal data

Statement
The organization provides individuals with access to their personal
information for review or update.

Rationale Comply with global or local regulations or legal constrains.

Implications

 Confirmation of individual's identity before access is given to
personal information.

 Personal information presented in understandable format.

 Access provided in reasonable time frame and at a reasonable
cost.

 Statement of disagreement; the reason for denial should be
explained to individuals in writing.

Name
Principle

Collection Limitation Principle

Statement

There should be limits to the collection of personal data and any such data
should be obtained by lawful and fair means and, where appropriate, with
the knowledge or consent of the data subject. (Source:OECDprivacy.org, by
Ben Gerber)

Rationale

When collecting many personal data records this will have a significant
impact on:

 Risks

94

 Costs

Collecting personal data means end-users trust you (you do no evil). The
more data you collect the harder it will be to protect the data for other forms
of usages in future.

Implications

 Make an architecture or design that is clear on what data objects
are collected for what business process. Do not collect data with
purpose of data mining based on vague use cases.

 Make a data design for all data that is collected.

Name
Principle

Collection of personal data

Statement
Personal information is only collected for the purposes identified in a
notice presented to the users.

Rationale Legal regulation (local, global)

Implications

 document and describe types of information collected and
methods of collection

 collection of information by fair and lawful means, including
collection from third parties

 inform individuals if information is developed or additional
information is acquired

Name
Principle

Defensive data collection

95

Statement Limited data collected from users only for functionality needed.

Rationale
Only collect data what is needed for performing functionality. Limiting data
collection prevents risks on data leakage.

Implications
De-identify where and when possible to reduce risk of privacy data
concerns. Data must deleted when no longer necessary.

Name
Principle

Design reviews

Statement
All architectures and designs must be reviewed. Minimal on security aspects
and potential risks. Also to determine if all (security and privacy) principles
and requirements are followed.

Rationale

Integrating security into the design phase saves money and time. Conduct a
risk review with security professionals and threat model the application to
identify key risks and to improve product and processes under development.
This helps you integrate appropriate countermeasures into the design and
architecture of the application. Improving architecture and design is by far
the best option (time,cost etc) for dealing with security and privacy.

Implications
Organize or make use of a structured review process to benefit from review.
SME (Subject Matter Experts) must be available for doing reviews. Reserve
time to improve architectures and designs or to improve code.

Name
Principle

Disclosure to third parties

96

Statement
Personal information is disclosed to third parties only for the identified
purposes and with implicit or explicit consent of the individual.

Rationale

 Communication with third parties should be made known to the
individual

 Information should only be disclosed to third parties that have
equivalent agreements to protect personal

 Information individuals should be aware of any new
uses/purposes for the information the organization should take
remedial action in response to misuse of personal information by
a third party

Implications
Make sure end-users can read , understand and agree with your privacy
terms.

Name
Principle

Don't trust infrastructure

Statement Underlaying infrastructure cannot be assumed safe.

Rationale
Vulnerabilities are at hardware,firmwire, virtualization, middleware and
application layers. To minimize data leakage risks trusting security of other
objects should be prevented.

Implications Sandbox model /Jericho model needed. Layered defense easily possible

Name Don't trust services (from others)

97

Principle

Statement
Services from others (departments, companies) should never (ever) be
trusted.

Rationale
Security design should protect against services use of other layers or
applications (also SAAS services). Systems or sub-systems outside the
bounds of a receiving component must never be trusted implicitly.

Implications

Every input/output and given by external services must be validated.
Authentication, authorization can be needed. Measurements to maintain
availability when using services (input or output) requires strict
measurements implemented.

Name
Principle

Individual Participation Principle

Statement
An individual should have the right to get clear insight on data collected that
relates to him.

Rationale
Users should be informed on what is collected on request. In some countries
this is a legal requirement for all companies collecting personal data.

Implications

 User request should be handled within a reasonable time

 At a minimal cost

 Users should be informed on how data is protected, deleted and
what data is shared with other companies.

98

Name
Principle

Management Responsibility

Statement
The organization defines, documents, communicates and assigns
accountability for its privacy policies and procedures.

Rationale
Management is responsible for organising processes needed to be compliant
for privacy regulations and handling personal data within the company.

Implications

 privacy policies define and document all ten GAPP

 review and approval of changes to privacy policies conducted by
management

 risk assessment process in place to establish a risk baseline and
regularly identify new or changing risks to personal data

 infrastructure and systems management takes into consideration
impacts on personal privacy

 privacy awareness training

Name
Principle

Monitoring and enforcement

Statement
The organization monitors compliance with its privacy policies and
procedures. It also has procedures in place to address privacy-related
complaints and disputes.

Rationale

Implications
 individuals should be informed on how to contact the

organization with inquiries, complaints and disputes

99

 formal process in place for inquires, complaints or disputes

 each complaint is addressed and the resolution is documented
for the individual

 compliance with privacy policies, procedures, commitments and
legislation is reviewed, documented and reported to
management

Name
Principle

Purpose Specification Principle

Statement

The purposes for which personal data are collected should be specified not
later than at the time of data collection and the subsequent use limited to the
fulfilment of those purposes or such others as are not incompatible with
those purposes and as are specified on each occasion of change of purpose.
(source: http://oecdprivacy.org/)

Rationale

Implications
The purpose of personal data collection must be clearly defined in an
architecture or design. This involves business, functional and IT designs.

Name
Principle

Security for privacy

Statement
Personal information is protected against both physical and logical
unauthorized access.

Rationale
 privacy policies must address the security of personal

100

information

 information security programs must include administrative,
technical and physical safeguards

 logical access controls in place

 restrictions on physical access

 environmental safeguards

 personal information protected when being transmitted (e.g.
mail, internet, public or other non-secure networks)

 security safeguards should be tested for effectiveness at least
once annually

Implications

Name
Principle

Security Safeguards

Statement
Personal data should be protected by reasonable security safeguards against
such risks as loss or unauthorised access, destruction, use, modification or
disclosure of data.

Rationale Personal data is valuable.

Implications
Security must be in place. Security control system must be operational.
(prevent,detect, react etc)

101

Name
Principle

Use Limitation Principle

Statement

Personal data should not be disclosed, made available or otherwise used for
purposes other than those specified in accordance with a) with the consent
of the data subject; or b) by the authority of law. (source:
http://oecdprivacy.org/)

Rationale
Using personal data for other means than collected introduces extra risks
and complexity for your security and privacy operations. Most of the time
other use of data is not securely designed.

Implications

102

Using Open Source for security and
privacy protection

Introduction

To increase and improve security and protect our privacy open source solutions are more
and more seen as a very good solution. Within more and more companies worldwide we
notice a trends towards adopting open source solutions for security and privacy protection.
Governments worldwide cannot depend and trust on closed source software for their
security infrastructure anymore. Gartner predicts that by 2016 99% of Global 2000
enterprises will use open source in mission-critical software. So open source solutions for
controlling security and privacy are slowly but steady becoming the new de facto standard.
As many security experts already known: Transparency and openness increase security
protection levels. However there is still a lot of resistance against using open source for
business use, especially when it comes down to security and privacy functionality.

This chapter covers facts and demystifies fads regarding open source security and privacy
products. When discussing the use of open source products for security and privacy
services two important question appear:

1. Why should open source be used for security and privacy functionality?

2. How can the quality of open source products for security and privacy be
determined and judged?

OSS quality is a very popular field for PhD students and analyst companies. However we
think that also technical experience of practical business use along with deep technical
knowledge is required in order to give a good advice for a company.

Of course we have an opinion regarding using open source security and privacy products
for serious business use. However opinions are to be discussed and challenged. Always.
Within the technical software field sometimes we tend to see things as hard facts. For
examples bad written code. Many measurements exist to measure the quality of software
code. However does this means that the product is totally useless? When it comes down to
software code, all software contains bugs and has more or less quality issues. If you ask an
auditor to look at software code, he will write an audit report with findings and
recommendations. Always. If you are hungry and go to McDonald they recommend a very
tasty bad solution that works temporary. In the end with every problem you face try to find
out the real interest of your trusted advisor. Is he biased? Prepossessed to get a certain

103

result? Always try to get a real in depended security or privacy advisor when it comes
down to questions that relate to your vital business risks. Always challenge the advice!
When it comes down to business related questions real facts are hard. Advice is always
biased. However be warned for fads! Especially within the field of open source software for
regular business use. For decades many vendors have created fads regarding open source.
Since this message is repeated over and over again sometimes we are weak and store these
fads as facts.

Some famous fads regarding open source the use for business use:

 Open Source software is created by communist to destroy our world.

 Open Source software is made by hobbyist.

 Open Source software is made by hackers and hackers are bad. Especially when
it comes down to security and privacy.

 Open Source software is never maintained.

 Open Source software is free, so it can not have any value.

 Quality of Open Source software is dramatic. Do does hackers known how to
spell quality at all?

 Using Open Source makes you depended of the good will of hackers.

 Using Open Source for security or privacy protection gives unacceptable high
risk, since the whole world can hack me now instantaneously.

 Using Open Source is an extra thread for my security or privacy.

Unfortunately, the list is endless long. Fighting fads is hard. Fads are most of the time a
perception based on incorrect information. In this chapter we will not discuss these fads or
other misunderstandings concerning OSS. However we will endorse you in this chapter
with solid arguments that can help you when you are faced with fads regarding the use of
open source solutions for security and privacy.

Some people are keen on ready to use list of good practices. However the context of
security and privacy is very complex (organization, processes, people, technology). So we
will not give a list of good practices. There are bad practices, but the list of good practices is
almost unlimited, since the context for a random use case depends on various business
aspects like:

 IT Knowledge and experience present in an organization.

104

 Information security knowledge present in an organization.

 Budget limitations.

 Time constrains.

 Maturity of IT within an organization. Especially with aspects like contracting,
sourcing and IT operational management.

 Legal and regulatory aspects.

Depending on the exact needs and problems of an organization the way quality aspects for
security and privacy solutions should be approached differs.

The following sections of this chapter covers the following questions:

 What is open source?

 Why should open source products be used for security and privacy solutions?

 What quality levels are needed for open source security and privacy products?

 What aspects are important when selecting security or privacy products for a
solution architecture or within use in an organization?

What is open Source Software (OSS)?

Before even considering using open source products for security and privacy applications,
it is strongly recommended that a good solid knowledge exist what open source really is.

In brief open source software is computer software for which the source code is available.

More in depth it is recommended to read the full definition of open source as provided by
Open Source Initiative (http://opensource.org/osd):

1. Free Redistribution: The license shall not restrict any party from selling or
giving away the software as a component of an aggregate software distribution
containing programs from several different sources. The license shall not
require a royalty or other fee for such sale.

2. Source Code: The program must include source code, and must allow
distribution in source code as well as compiled form. Where some form of a
product is not distributed with source code, there must be a well-publicized
means of obtaining the source code for no more than a reasonable reproduction

http://opensource.org/osd

105

cost preferably, downloading via the Internet without charge. The source code
must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as
the output of a pre-processor or translator are not allowed.

3. Derived Works: The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the
original software.

4. Integrity of The Author's Source Code: The license may restrict source-code
from being distributed in modified form only if the license allows the
distribution of "patch files" with the source code for the purpose of modifying
the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived
works to carry a different name or version number from the original software.

5. No Discrimination Against Persons or Groups: The license must not
discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavour: The license must not restrict
anyone from making use of the program in a specific field of endeavour. For
example, it may not restrict the program from being used in a business, or from
being used for genetic research.

7. Distribution of License: The rights attached to the program must apply to all to
whom the program is redistributed without the need for execution of an
additional license by those parties.

8. License Must Not Be Specific to a Product: The rights attached to the program
must not depend on the program's being part of a particular software
distribution. If the program is extracted from that distribution and used or
distributed within the terms of the program's license, all parties to whom the
program is redistributed should have the same rights as those that are granted
in conjunction with the original software distribution.

9. License Must Not Restrict Other Software: The license must not place
restrictions on other software that is distributed along with the licensed
software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral: No provision of the license may be
predicated on any individual technology or style of interface.

106

Reading this long definition can you make confused. Especially when you need a shorter
definition to explain to senior management the benefits of what open source is all about.

Open source is based on three concepts:

1. A development methodology that defines a community approach to developing
software, meritocracy of developers, and quality based on peer review.

2. A licensing approach that provides free access to source code, conforms to one
or more “Open Source Initiative” licenses, and prioritizes the rights of users and
committers.

3. A community of users and developers with open participation.

Currently open source software is software that is licensed under one of several accepted
free software or open source licenses approved by the Open Source Initiative that:

 do not restrict your ability to run the software, for any purpose,

 provide one with access to the source code,

 permit one to modify the software,

 permit one to share verbatim copies of the software with others, and

 under certain conditions, allow one to share one’s modifications with others.

"Open source software" is sometimes also called "Free software", "libre software",
"Free/open source software (FOSS or F/OSS)", and "Free/Libre/Open Source Software
(FLOSS)". The term "Free software" predates the term "open source software", but the term
"Free software" has been sometimes misinterpreted as meaning "no cost", which is not the
intended meaning in this context. ("Free" in "Free software" refers to freedom, not price.)
So e.g. the free antivirus software AVG (http://www.avg.com) is no OSS software. In
September 2015 Security firm AVG announced it will sell search and browser history data
of users to advertisers in order to "make money" from its free antivirus software. Due to
the fact that AVG is no OSS software, users who care about their privacy have no other
choice than to look for an alternative antivirus package. If AVG was OSS software,
presumable a software fork was created.

“Free software” means software that respects users' freedom and community. Roughly, it
means that the users have the freedom to run, copy, distribute, study, change and improve
the software. Thus, “free software” is a matter of liberty, not price.

The word "free" has many different meanings, and these different meanings often make it
harder to understand OSS. The term "Free software" (as used in literature) is based on the

http://www.avg.com/

107

word "freedom" (the word "libre" is used in some other languages). However, "free" can
also mean "no cost", and sometimes "no cost" products come with a "catch" that in fact is
the opposite of freedom. A catch everyone in the IT knows as vendor lock in or (unhealthy)
dependency.

To understand the concept of free, one should think of “free” as in “free speech,” not as in
“free beer”. Sometimes OSS is called ‘libre software’ to show we do not mean it is gratis. A
LinuxToday posting found a simple way to express these different meanings of the word
free, which I'll slightly paraphrase here:

Free can mean various things:

 Free, as in free speech.

 Free, as in free beer.

 Free, as no cost.

 Free, as high on drugs

They are not all the same.

Free software(FOSS): Richard Stallman's Free Software Definition, adopted by the Free
Software Foundation (FSF), defines free software as a matter of liberty, not price.

So summarized: Open source software (OSS) has nothing to do with no cost or no value.
The initial cost structure for acquiring OSS based solutions is different. A license fee for the
software use is absent. However to keep your solution supported by a vendor most
companies pay a regular maintained fee to keep quality ask risk as low as possible. This is
equal as with closed software solutions.

The power of open for security and privacy

To make improve security and privacy within digital worlds a number of aspects are of
crucial importance:

 Open collaboration: This means that everyone can reuse and/or improve
security and privacy related material (e.g. documentation).

 Use of open solutions: This means the application of OSS products for more and
more security and privacy services. Many papers and books are written of the
business advantage of using OSS software. When it comes down to security the
main principle to go for OSS is openness. Using open solutions makes the
solutions in the end more resistant against vulnerabilities. In the end it is about

http://linuxtoday.com/news_story.php3?ltsn=2002-04-20-002-26-OS&tbovrmode=1#talkback_area
http://linuxtoday.com/news_story.php3?ltsn=2002-04-20-002-26-OS&tbovrmode=1#talkback_area

108

transparent facts and quality criteria everyone can evaluate if needed. With
closed source solution validation of quality statements is often not for all
stakeholders possible. Think about the use of simple encryption software: We
have more trust in an open encryption solutions that one that is claimed by a
company that is unbreakable.

 Learn from each other and from our mistakes. People make mistakes. We make
bad designs that increases security problems instead of solving them. OSS
projects are not always managed as they should be when they produce critical
security software. Learning in an open collaborative way without any direct or
indirect commercial interest is crucial to get security and privacy aspects in IT
where they should be: Just some quality criteria within the whole range of
important aspects. In future the emphasis on security and privacy is equal as on
safety, usability and business continuity. Currently only for safety aspects
mandatory policies exist for companies to prevent people dying from software
bugs. But today security and privacy aspects are not handled in the same way as
safety aspects. A different approach is taken when it comes to designing IT
systems on which human lives depend compared to designing information and
privacy aspects in (business) information systems.

Improvements will not come overnight and a paradigm shift is needed for many companies
to be more open and transparent regarding their security and privacy designs. Since
privacy data is a core asset of customers of all companies, in future customers will demand
a full transparent view on how a company protects the value assets given by customers.

Open security can be defined as an approach to use existing open knowledge in
combination with the application of open source software (OSS) to help solve cyber
security problems. OSS approaches collaboratively develop and maintain intellectual works
(including software and documentation) by enabling us to use them for any purpose, as
well as study, create, change, and redistribute them (in whole or in part).

Cyber security problems are created by starting with bad architecture or design or simply
by a lack of knowledge and experience. Using an open security approach the security can be
improved through collaboration.

So why use open source software for security and privacy applications? Open source
software provides additional trust by allowing people to look into the source code whereas
good OSS projects are completely transparent on all their SDLC and quality processes.
When using OSS adjustments or improvements are easily made providing you with a
flexible solution for your business.

109

Summary: Open source for use in the field of security and privacy means easy reuse (code
or ideas), to improve what is already there. Reuse would be in a way so everyone can
benefit. That way the quality gets better and better.

Determining quality of OSS for security and
privacy applications

What quality really is or not has been a long running debate in many (scientific)
management books. So it is only logic that quality in open source has been also a long
running debate. However the fads regarding OSS made these discussions even harder to get
a clear view on what should be defined as quality in relation to OSS security and privacy
products. If you are planning to join these discussions, we would like to warn you to
beware that these discussions are biased with many fads and unproven facts. Also many
opinions in this field take an almost religious turn. General statements and general
discussion seldom lead to weighted balanced judgment. IT for business use or security is
not only the field of scientific computer science. Social sciences play a great role within IT
security and privacy (think of the many awareness campaigns), and the field of risk
management is not only the field of statisticians and mathematicians, but also psychology
plays a role.

In essence the definition of quality and good OSS quality largely depends on the goal and
context of the specific use case.

Quality and trust are for security and privacy products one of the most important aspects.
This section will give guidelines on how quality of open source software for security and
privacy can be easily measured and judged depending on your goal and use case.

Determination of the quality of security and privacy for a specific use case is complex.
Besides an approved OSS licensed (see http://opensource.org) an OSS security products
requires far more quality aspects. A license alone is not enough. This section describes a
checklist to assist in evaluating the quality of an OSS products targeted on security and
privacy. OSS products should always be evaluated on quality before use for real. But
security and privacy OSS products have the following points that make evaluating a bit
different:

 Trust

http://opensource.org/

110

 Security (Unfortunately many security products are insecure and require
insecure configuration to be usable!)

 Maintenance. Due to the SSL Heartbleed bug (http://heartbleed.com/)
maintenance of OSS security products has grown in importance.

 Safety aspects can be compromised if security and privacy aspects are not
handled well. Recent examples are car-hacking and plane-hacking. Due to
security flaws, the safety can be compromised if intruders get into a system.
Also personal safety (where do people live that …) can be harmed if for example
web shops are sloppy with personal data and order records. Criminals like list
of persons who buy very expensive paintings online.

The use of Open Source Software (OSS) components is a viable alternative to Commercial
Off-The-Shelf (COTS) security and privacy components. Since the quality of OSS products
varies widely, both industry and the research community have reported several OSS
evaluation methods that are tailored to the specific characteristics of OSS. We have
performed a systematic identification and evaluation of many of these methods, and
present in this section the factors that really make sense with respects to:

 The endless types of context specific organizations that potentially use OSS
security and privacy products.

 Protect (very)small and large security and privacy OSS projects who have very
high product quality, but score less on (visible) process quality aspects.

 The variety in which security and privacy OSS products can be used within a
SDLC.

The latest and most promising project for potential users to get a fast insight in OSS
security projects is the “Core Infrastructure Initiative Best Practices Badge” project of the
linuxfoundation.org. Badge will hopefully give in future some indication on some quality
aspects regarding OSS security products. However the badges project has a specific scope
and not all value reusable OSS software and projects are able to gain a badge. But also if an
OSS has a badge, it still will be important to evaluate the use and risks for your use case.

A good security and privacy product should at least be evaluated on:

 Product quality aspects;

 Process quality aspects and

 Quality control system used to preserve product and process quality

111

In order to cut the complexity and not write endless notes on what quality is and how it can
be measured we will focus in this section on given ready-to-use evaluation criteria. Use,
reuse , or improve them. We will also try to collaborate with the badges project and similar
OWASP projects to get one open evaluation list in future that is easy to use.

Note that some evaluation criteria are more important than others, but since quality is
always context related evaluating the many different aspects further in depth should be
done in a context specific solution architecture, not in this (general) reference architecture.

To keep things organized we use:

 ISO 25010 standard for software product quality (successor of the ISO 9126
standard)

 ISO/IEC15288 System Lifecycle Processes.

Note that ISO 25010 lacks attention for aspects like:

 Functional requirements

 Compliance (e.g. with laws, standards) requirements

 Documentation, Support and Training requirements

To overcome these aspects, we use our security and privacy principles in order to get an in-
depth list of criteria that can be used for evaluation.

The following evaluation model is used:

112

Our main goal is to present in this reference architecture a list of evaluation criteria as
simple as possible. So we enriched the criteria with simple (example) questions.

In the following paragraph key questions are given that can be used to evaluate an OSS
security or privacy application for your use case.

Architecture and design

OSS projects that produce security or privacy software, solutions, libraries etc. should have:

 Defined principles.

 Defined requirements.

 Make reuse of e.g. good security and privacy standards to avoid reinventing the
wheel.

 Readable architecture or design. So also people who are not programmers can
understand the design. At least all design decision should be documented.

Unfortunately good security or privacy architectures and designs are rare for IT projects.
This does not only account to large governmental projects, but also for large OSS security
projects. Mind also that a big OSS security or privacy project can mean different things:

 Large number of users of a product or

113

 Enormous amount of source code

 Significant number of full time maintainers (over 10 is already a huge amount)

 Enormous number of contributors to a project.

 Etc.

E.g. the OpenSSL project has many users worldwide, however since the number of active
project members was dramatically small, large is no guarantee for sustainable good quality.

Maintainability

When using OSS software you must have a strategy and a process that handles the
maintenance of the software. Maintenance is essential for security and privacy related
software products.

Maintenance has many aspects. For a healthy OSS security and privacy application you can
divide maintenance in:

1. Maintenance on the OSS software product itself;

2. Maintenance on the quality system built around the eco system (processes,
organization, financial s, control procedures, contributors and maintainers
stability, etc.)

3. Maintenance process required for using the product.

Since this section only covers guidelines for evaluation of quality aspects of OSS security
and privacy products we will only deal with the maintenance aspects directly related to the
OSS product and organization surrounding it. But please beware: The maintenance
required to be organized by you or your organization can differ significantly per OSS
product. Some OSS security and privacy projects are aimed at making maintenance
processes needed within your organization as simple as possible where other projects
require more effort. Critical evaluation questions are:

 Is there a transparent way for (new)requirements adoption?

 Is there a strict change management process?

 Is there a tough release scheme? (A release early, release often (sometimes
abbreviated RERO) approach). E.g. every month a new release.

 Is there a stable release and an alfa or beta release with new features?

114

 Is there an active community of developers?

 Are security vulnerabilities fixed in a structured way?

 Is there a source code release and a binary code release?

 What is the frequency of updates for the OSS project?

 Does the project use a build system that can automatically rebuild the software?

 Is there an automated test suite available?

 Are new tests always added for new functionality? (E.g. due to a internal
policy?)

Maintainability plays a special role for open source cryptographic software algorithms.
Cryptographic software requires next to excellent programming skills deep knowledge of
cryptography. To be able to maintain cryptographic software finding the right resources is
very hard. Within the security principle section some principles can be found that relate to
quality aspects formulated for cryptographic software.

Reliability

Whenever you use an OSS security or privacy product you rely on protection or
functionality. Reliability is a core aspect when evaluating OSS security and privacy
products. Critical evaluation questions for reliability are:

 Is there an automatic test suite for the product?

 Does the testing methodology include (automatic) regression tests?

 Are interfaces with other products and platforms tested?

 Is there a written test plan along with documented test results?

 Are test reports published on the website?

 Is the software tested (when relevant) against OWASP top 10 vulnerabilities?

 Is the OWASP Application Security Verification Standard (ASVS) met?

 Is there a public accessible defects database?

 Is there a process organized around defects management?

115

 Is there a standard procedure followed before release new software in stable
versions?

 Is the quality process documented?

 Is an endurance test under stress load performed with the public released
version? Is this test public so everyone can (re)use it? (note: Not for all
applications relevant)

 Has the project a website with a static URL?

 Is it clear who are project members, contributors and committers?

 Does a written procedure exist on how one can get commit rights on the core
repository?

 Is there a public audit log available of changes on the core repository?
(Subversion, Git and many other SSCM systems provide this crucial feature.)

 Are the SANS Securing Web Application Technologies (SWAT) criteria met?

Security

When using an OSS product you trust it is secure. Security is of course about trust, but
when you use OSS security and privacy tools you must evaluate some crucial security
aspects.

Unfortunately many security products exist that decrease your security. Software that
requires insecure configurations for example or many nonstandard network sockets is not
a good example of decent security.

Even if you are only testing a product or evaluating, you must have some criteria in place to
prevent downloading malware or worse.

Some critical questions to determine some security aspects are:

 Are security vulnerabilities fixed according to a described process?

 Does the project have its own security officer or security team?

116

 Does a procedure exist and is it followed for performing a static and dynamic
security code review on every major release? Are results of the secure code
reviews available?

 A dynamic analysis tool for the code is used before releasing a major version
(e.g. the project may use a fuzzing tool (e.g., American Fuzzy Lop) or a web
application scanner (e.g., OWASP ZAP or w3af).

 What kind of socket connections and protocols have been used? Standard
sockets connections (22,443,80,445) and standard protocols used (e.g. HTTPS,
SSH, SSL, LDAP, LDAPs)?

 Are product vulnerabilities mentioned in the CVE database?

 Is it clear how many vulnerabilities (open and fixed) are mentioned in the CVE
database? (Use the http://web.nvd.nist.gov/view/vuln/search?execution=e2s1
) and search on product name. Note that vulnerabilities can be reported on the
core product, but also on additional contributed modules if you are
investigating a large OSS project.

 Is there a process to deal with vulnerabilities (e.g. release of fixed/patches in a
controlled manner).

 Has the project created its own cryptographic libraries? Note that writing
cryptographic algorithms is very hard and should be prevented by using already
available good OSS algorithms.

 If cryptographic protocols or libraries are used, have these algorithms been
published and reviewed by experts?

117

 Security and privacy principles and requirements are defined for the project
and within the design and implementation it is clear how these are covered.

 All vulnerabilities are reported on the project site and are accessible without
limitation by the public.

 It is clearly documented what process must be followed to obtain change rights
on the main software repository.

 Procedures and policies exist to protect the code base from vandalism.

 Is a software release signed by a hash (minimal sha1 or stronger)?

Privacy

When you use an OSS security or privacy product you should not be required to register
your name and organization in a database if it only serves a marketing purpose. All OSS
licenses are very clear on what is allowed regarding distribution. People may sell OSS
software. Even the GPL allows this. But since privacy aspects are becoming more and more
important you must be aware on critical aspects that can harm your privacy when using
OSS security or privacy tools.

Some critical questions to determine and evaluate privacy aspects are:

 The project has a clear written privacy policy on the website.

 Tracking cookies and other finger printing techniques are not used on the
project core community website.

 The OSS security and privacy project respects the privacy of its users and
contributors in all possible ways.

118

 Project maintainers and contributors are allowed to participate under an alias
since not all governments allow working on OSS privacy or security products.

 The project is clear on measurements for handling contributors' personal
identifiable data.

 Privacy of users or companies using the product is neither exposed nor stored.

 No privacy related data is stored and used by the project.

Change control

There can be no progress without change and if change is not taking place the bit rot will
start. For security and privacy OSS projects some change control LCM aspects are of crucial
importance. To make implementation of changes easy more and more projects enable an
automatic update service that automatically implements changes on all running software
instances. However implementing such a mechanism requires a very high level of internal
change and governance processes.

Some questions to determine and evaluate change control aspects are:

 Has the project a version-controlled source repository that is publicly readable?

 Is issue tracking for defects in place? (For reporting bugs or feature request).

 Is tracking of requirements or enhancement on requirements request in place?

 Does the project release software with unique version numbering?

 Is a change log in human readable format for each release available?

 Does a clear documented SLCM process for the project exist?

 Is it clear how automatically built CI environments are configured and
maintained?

 Does the change control process allow roll backs of releases?

Documentation

119

Software source code is not uniquely readable. Not everyone is a programmer and there is
a huge number of dialects. Software code can be for example GO, Java, C/C++,PHP, Perl,
Python, Javascript, Erlang, Scale etc. To be able to use software, configure it and get a quick
impression of the quality of the project documentation is crucial. A project with good and
solid documentation provides trust. Large popular OSS security and privacy projects will
have many (commercial) books available. Good documentation creates good projects. Bad
or not maintained documentation can kill a project.

Some questions to determine and evaluate documentation aspects to investigate the
quality of an OSS security and privacy application are:

 Is documentation for new developers available for free on the website?

 Is the source code documented?

 Is documentation maintained?

 Does a structured written procedure exist on how the documentation is
maintained?

 Are documentation processes embedded in the CI pipeline?

 Are the user manuals provided by the project?

 Is it directly clear what the status of the documentation is? Programmers
usually do not write the user documentation. But it is crucial that the
documentation keeps in sync with every release.

 Are there (many) books (besides the one published by the project itself)
available?

 Is commercial documentation available (e.g. books on Amazone)?

 Can everyone participate in improving the documentation?

 Is the documentation published under a Creative Commons licenses (CC)
license?

Community

All solid OSS security and privacy projects have a strong and stable community. By
evaluating community aspects one can get an indication on how the project deals with all
kind of crucial quality aspects on product level and on process level. A community does not
have to be large and very active. Many good security projects exist with 2-3 community

120

members who manage to perform all crucial processes on a periodic basis. Stability is often
more important than size. An OSS project that has too many forks can be an indication of a
strong vision of the leader or a lack of leadership on dealing with crucial issues regarding
the project health. A fork is most of the time a good sign. It means the software is used in
many different ways and some people are building other communities to support their
future vision for the project. But some research on why a project is forked should be done
when you are evaluating OSS security products that offer exact the same functionality and
share the same code base.

Some questions that can assist you in evaluation community related aspects:

 How big is the community of core developers?

 Is the process of joining the OSS project transparent?

 Is it clear how one can become a code submitter?

 Is the process around the core community open and transparent?

 Are commercial books of the project available?

 What is the number of available commercial books of the project?

 Are many books available? (E.g. on amazone.com or O'Reilly)

 Are mailing lists of the core developers open and transparent?

 Is it clear how decisions are made within the project?

 Can everyone attend to all project discussions (e.g. mailing list, slack channels,
IRC)?

 Average number of people active on IRC or slack?

 The project has a written policy to stay active and healthy (e.g. the C4, see zmq)

Integration

Using OSS security or privacy software is always done in a specific context. You already
have other software building blocks, you need your own reports, or you want to use
another identity manager to use the product. Integration aspects on business and technical
level are crucial for healthy OSS security and privacy projects. Too often projects fall victim
to scope creep and are creating a one-size-fits-all solution. Logging, auditing and
encryption e.g. are services are a world of themselves. The same goes for great responsive

121

GUI’s. You cannot create an excellent CMS when you are focusing on a dedicated security or
privacy function.

Some questions that can help you evaluate integration aspects of OSS security and privacy
products:

 Can the software easily be integrated with non OSS or other OSS projects?

 Does the software allow an easy way to extend its functionality?

 Is the software modular built?

 Are REST interfaces available?

 Are all interfaces for external use stateless by design?

 Are API’s well documented?

 Does the OSS license have impact on building your own library or module
against the core product? E.g. the GPL is very clear on integration.

 Is it clear how security or privacy aspects are impacted when third party
integration modules are used?

Support

Every organization using OSS security and privacy products sooner or later needs some
professional support to maintain the product, to adjust configuration settings or to
implement new versions. Within many businesses support on software is crucial and it is
often written down in lengthy support contracts with many sentences that must make clear
what kind of support is requested. In general, when you have a good relationship with a
company that supports some (OSS) software for you, the contract should be based more on
trust. Lengthy contracts are usually the result of little confidence or expensive mistakes
made in the past. The great advantage of using OSS security and privacy products is that
you can be very flexible in how you organize crucial support issues for a product. Of course
when you rebuild the product it will be hard to find people who can easily resolve
problems. Some OSS security and privacy products have a commercial version for which
you can get paid support. But when the commercial version differs from the OSS version
you are not dealing with a healthy OSS project anymore.

122

A large and well known OSS security and privacy project has many excellent people within
the community who are willing to provide support.

Some questions that help you evaluate support aspects regarding OSS security and privacy
products:

 Is paid support possible?

 Is there a strong community support?

 Can questions on usage, configuration or problems be posted somewhere?

 Has the project an active open forum or mailing list for support questions?

 Does a mailing list exist for paid support or contracting work corporate users of
the product?

 Is it possible to contact one of the core developer(s) working on the product
directly (e.g. email?)

Legal

Security and privacy application can have many legal aspects. This applies not only to the
usage, but also to the possession and creation of security and privacy related software.
Many governments suspect people who use encryption software for private use. In some
countries the use of privacy protection tools is prohibited. When using OSS security and
privacy products it can be crucial to evaluate the legal aspects first, before using the
product. Many security or privacy OSS products are great tools for criminals. This cannot
be avoided. When someone uses a tablet to smash people on the head Apple cannot be
accused of creating a murder weapon. However responsible projects are aware of possible
trivial misuse.

Some questions that can help you evaluate legal aspects of OSS security and privacy
products:

 Which OSS license is used?

 Is the license approved by the OSI foundation?

 Is the OSS license a widely used license?

 All functionality must meet the Open Standards Requirement for Software by the
Open Source Initiative

http://opensource.org/osr
http://opensource.org/osr
http://opensource.org/osr

123

 Is the OSS project aware of any possible misuse of the product? E.g. does a
notice exist on what the intention for correct usage is of the product?

 Can you be held responsible for damage or lawbreaking when you use the
product on the open internet? Does the project warn you for this kind of
aspects?

124

OSS Security and Privacy System Building
Blocks

Introduction

When you know the advantages and disadvantages of using open source building blocks for
your security architecture or design, this chapter provides an overview on some open
source security solutions. When you have all your security/privacy principles,
requirements, attack vectors and security persona's clear the hardest task is to select (or
create) solution building blocks that covers the needed functionality. Using OSS security or
privacy Solution building Blocks within your solution architecture can give significant
advantages. See section "The power of open for security and privacy" in this reference
architecture for more information on the advantages.

We know we can never be complete with an overview of OSS security and privacy
applications. The overview in this chapter is created end of 2015 and is just a guidance to
give you:

 Insights on what type of products are available in the OSS domain.

 A collection of OSS solution building blocks for your security architecture or
design you can consider to evaluate for your specific use case.

 Some ideas of solutions you are perhaps not familiar with.

There are now a million different open source software projects published somewhere on
the internet. Our holy grail is to keep track of the top 50 security and privacy open source
projects for every security and privacy service needed within a business architecture. This
way when you need a secure logging service you can evaluate the top 50 projects first
before searching further or creating (aka forking) your own. In this first release of this OSS
Security and Privacy reference architecture we yet are far away from this goal.

Criteria used for products mentioned in this chapter are:

 The products must have a valid OSS license;

 The project must be active and must meet a certain quality level;

 The product must be in use somewhere (*)

125

(*) Unfortunately we can and never will expose information where products are in use,
however many mature products have solid references on their website, along with active
user groups.

The number of OSS security and privacy applications available is over overwhelming. Using
the following conceptual topology can help with arranging functional to product mapping
needs:

For every security or privacy function or service needed you should look serious at using
open transparent reusable solutions. So Open Source. Of course many vendors provide
good solid security products for specific use cases. But when you feel you need a trivial
security or privacy service, there is almost always a working and maintained OSS
application available. When using an OSS solutions, you should have a large choice of
companies that deliver maintenance and support on this application on commercial bases.

126

OSS Security Applications

American fuzzy lop

SBB
Description

American fuzzy lop is a security-oriented fuzzer that employs a novel type of
compile-time instrumentation and genetic algorithms to automatically
discover clean, interesting test cases that trigger new internal states in the
targeted binary. This substantially improves the functional coverage for the
fuzzed code.

These tool can be very productive in determining security flaws: The famous
SSL Heartbleed bug was found in record time using this software. See
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-
found.html.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C

Project URL http://lcamtuf.coredump.cx/afl/

Source
Location

http://lcamtuf.coredump.cx/afl/releases/

Tag(s) Security, Test Tool

Bokken (Open Source Reverse Code Engineering)

SBB
Description

Bokken is an Open Source Reverse Code Engineering tool.

Bokken is a GUI for the Pyew and Radare projects so it offers almost all the

https://en.wikipedia.org/wiki/Fuzz_testing
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/releases/

127

same features that Pyew has and and some of the Radare’s ones. It’s intended
to be a basic disassembler, mainly, to analyze malware and vulnerabilities.

Currently Bokken is neither an hexadecimal editor nor a full featured
disassembler YET, so it should not be used for deep code analysis or to try to
modify files with it.

Bokken has the ability to detect and analyze PE/Elf/mach0 files so, when
one of those file formats is detected, the GUI shows all the information found
on the analysis and offers many additional options to study the file.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

Python

Project URL http://bokken.re

Source
Location

https://inguma.eu/projects/bokken/repository

Tag(s) Code Analyzer, Security

Bosun

SBB
Description

Bosun is an open-source, MIT licensed, monitoring and alerting system by
Stack Exchange. It has an expressive domain specific language for evaluating
alerts and creating detailed notifications. It also lets you test your alerts
against history for a faster development experience.

Collecting metrics about our systems is fun but what makes a monitoring
system useful is alerting when anomalies arise. This is the real strength of
Bosun.

http://bokken.re/
https://inguma.eu/projects/bokken/repository

128

Bosun encourages a particular workflow that makes it easy to design, test,
and deploy an alert. If you look at the top of the Bosun display, the tabs
include Items, Graph, Expression, Rule, and Test config in left-to-right order;
that reflects the phases you go through as you create an alert. In general, first
you’ll select an item (metric) that is the basis of the alert.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

GO

Project URL http://bosun.org/

Source
Location

https://github.com/bosun-monitor/bosun

Tag(s) Security, SIEM

Bro

SBB
Description

Bro is a powerful network analysis framework. Bro is a passive, open-source
network traffic analyzer. It is primarily a security monitor that inspects all
traffic on a link in depth for signs of suspicious activity. Bro supports a wide
range of traffic analysis tasks even outside of the security domain, including
performance measurements and helping with trouble-shooting.

The most immediate benefit that a site gains from deploying Bro is an
extensive set of log files that record a network’s activity in high-level terms.
These logs include not only a comprehensive record of every connection seen
on the wire, but also application-layer transcripts such as, e.g., all HTTP
sessions with their requested URIs, key headers, MIME types, and server
responses; DNS requests with replies; SSL certificates; key content of SMTP
sessions; and much more. By default, Bro writes all this information into

http://bosun.org/
https://github.com/bosun-monitor/bosun

129

well-structured tab-separated log files suitable for post-processing with
external software. Users can however also chose from a set of alternative
output formats and backends to interface directly with, e.g., external
databases.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C

Project URL https://www.bro.org

Source
Location

https://github.com/bro

Tag(s) IDS, Security

Data Seal

SBB
Description

Data Seal is a lightweight, UELMA-compliant data authentication service.

Data Seal is a project of U.S. Open Data to provide a system where open data
released by governments can be authenticated by end users—whether or not
the data was most recently downloaded from the official source.

Government data releases need to abide by local laws (for example, the
District of Columbia Official Code) and should also abide by the Uniform
Electronic Legal Material Act (UELMA). Part of the UELMA provisions state
that “legal material be…authenticated, by providing a method to determine
that it is unaltered”.

Data Seal provides agencies with a web-based interface to provide this
functionality.

https://www.bro.org/
https://github.com/bro
http://usopendata.org/
https://github.com/unitedstates/data-seal/wiki/UELMA
https://github.com/unitedstates/data-seal/wiki/UELMA

130

SBB License GNU General Public License (GPL) 2.0

Core
Technology

Django/Python

Project URL https://github.com/unitedstates/data-seal/wiki

Source
Location

https://github.com/unitedstates/data-seal

Tag(s) data authentication, Security

FIDO (Fully Integrated Defense Operation)

SBB
Description

FIDO (Fully Integrated Defense Operation – apologies to the FIDO Alliance for
acronym collision) is developed by NetFlix and now OSS. This system is for
automatically analyzing security events and responding to security incidents.

The premise of FIDO is simple… each year companies are receiving an ever
increasing amount of security related alerts. Instead of hiring more analyst to
comb through the endless stream of alerts we automate the analysis to
combat the barrage of information. Simply put, we integrate and then
automate the manual human processes by codifying the logic and process
used by threat analysts to provide consistent and reliable results.

The typical process for investigating security-related alerts is labor intensive
and largely manual. To make the situation more difficult, as attacks increase
in number and diversity, there is an increasing array of detection systems
deployed and generating even more alerts for security teams to investigate.

FIDO is a NetFlix OSS project, see:
http://techblog.netflix.com/2015/05/introducing-fido-automated-
security.html

https://github.com/unitedstates/data-seal/wiki
https://github.com/unitedstates/data-seal
http://techblog.netflix.com/2015/05/introducing-fido-automated-security.html
http://techblog.netflix.com/2015/05/introducing-fido-automated-security.html

131

SBB License Apache License 2.0

Core
Technology

C#

Project URL https://github.com/Netflix/Fido/wiki

Source
Location

https://github.com/Netflix/Fido

Tag(s) Security, SIEM

Gryffin

SBB
Description

Gryffin is a large scale web security scanning platform. Created by Yahoo, and
since September 2015 available as open source.

It is not yet another scanner. It was written to solve two specific problems
with existing scanners: coverage and scale. Better coverage translates to
fewer false negatives. Inherent scalability translates to capability of scanning,
and supporting a large elastic application infrastructure. Simply put, the
ability to scan 1000 applications today to 100,000 applications tomorrow by
straightforward horizontal scaling.

SBB License MIT License

Core
Technology

Go

Project URL https://github.com/yahoo/gryffin

https://github.com/Netflix/Fido/wiki
https://github.com/Netflix/Fido
https://github.com/yahoo/gryffin

132

Source
Location

https://github.com/yahoo/gryffin

Tag(s) IDS, Security, Vulnerability scanning

Kali

SBB
Description

Kali is the most complete ‘Penetration Testing Linux Distribution’ around.
Everything you need for penetration testing is collected, tested and made
available on this linux distribution. Of course all tools are OSS.

The complete list of tools can be found here:http://tools.kali.org/tools-
listing

SBB License GNU General Public License (GPL) 2.0

Core
Technology

N.A. (OSS Tool collection)

Project URL https://www.kali.org/

Source
Location

http://git.kali.org/gitweb/

Tag(s) Security, Sniffer, Vulnerability scanning

https://github.com/yahoo/gryffin
http://tools.kali.org/tools-listing
http://tools.kali.org/tools-listing
https://www.kali.org/
http://git.kali.org/gitweb/

133

Kismet

SBB
Description

Kismet is an 802.11 layer2 wireless network detector, sniffer, and intrusion
detection system. Kismet will work with any wireless card which supports
raw monitoring (rfmon) mode, and (with appropriate hardware) can sniff
802.11b, 802.11a, 802.11g, and 802.11n traffic. Kismet also supports plugins
which allow sniffing other media such as DECT.

Kismet identifies networks by passively collecting packets and detecting
standard named networks, detecting (and given time, decloaking) hidden
networks, and inferring the presence of non beaconing networks via data
traffic. The great feature of Kismet is that this tool works working passively,
so detection by IDS is prevented when scanning WLAN’s.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C++

Project URL http://www.kismetwireless.net/

Source
Location

https://www.kismetwireless.net/code/

Tag(s) IDS, Security, Sniffer

Libreswan

SBB
Description

Libreswan is an IPsec implementation for Linux. Libreswan is a free software
implementation of the most widely supported and standarized VPN protocol
based on (“IPsec”) and the Internet Key Exchange (“IKE”).

http://www.kismetwireless.net/
https://www.kismetwireless.net/code/

134

SBB License GNU General Public License (GPL) 2.0

Core
Technology

Project URL https://libreswan.org/

Source
Location

https://github.com/libreswan/libreswan

Tag(s) communication, Cryptography, Security

Lynis

SBB
Description

Lynis is a suite of tools (shell scripts) for security auditing, compliance and
hardening for Linux, Mac OS, and Unix based systems. Of course many
(better) audit tools are available, but this one is simple and straightforward.
So easy to extend and to improve. Especially if you like shell-scripting.

Michael Boelen from the Netherlands (owner of company cisofy.com)
created this software.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

unix-shell scripts

Project URL https://cisofy.com

Source https://github.com/CISOfy/lynis/

https://libreswan.org/
https://github.com/libreswan/libreswan
https://cisofy.com/
https://github.com/CISOfy/lynis/

135

Location

Tag(s) Audit, Security

Mantra

SBB
Description

OWASP Mantra is a collection of free and open source tools integrated into a
web browser, which can become handy for students, penetration testers, web
application developers,security professionals etc. It is portable, ready-to-run,
compact and follows the true spirit of free and open source software.

Mantra is lite, flexible, portable and user friendly with a nice graphical user
interface. You can carry it in memory cards, flash drives, CD/DVDs, etc. It can
be run natively on Linux, Windows and Mac platforms. It can also be installed
on to your system within minutes. Mantra is absolutely free of cost and takes
no time for you to set up.

Mantra is a browser especially designed for web application security testing.
By having such a product, more people will come to know the easiness and
flexibility of being able to follow basic testing procedures within the browser.
Mantra believes that having such a portable, easy to use and yet powerful
platform can be helpful for the industry.

Mantra has many built in tools to modify headers, manipulate input strings,
replay GET/POST requests, edit cookies, quickly switch between multiple
proxies, control forced redirects etc. This makes it a good software for
performing basic security checks and sometimes, exploitation. Thus, Mantra
can be used to solve basic levels of various web based CTFs, showcase
security issues in vulnerable web applications etc.

SBB License GNU General Public License (GPL) 3.0

Core
Technology

javascript

136

Project URL http://www.getmantra.com

Source
Location

https://code.google.com/p/getmantra/

Tag(s) Security, Test Tool

OpenVAS

SBB
Description

OpenVAS is a framework of several services and tools offering a
comprehensive and powerful vulnerability scanning and vulnerability
management solution.

The core of this SSL-secured service-oriented architecture is the OpenVAS
Scanner. The scanner very efficiently executes the actual Network
Vulnerability Tests (NVTs) which are served with daily updates via the
OpenVAS NVT Feed or via a commercial feed service.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C

Project URL http://www.openvas.org

Source
Location

https://scm.wald.intevation.org/svn/openvas/trunk

Tag(s) Security, Vulnerability scanning

http://www.getmantra.com/
https://code.google.com/p/getmantra/
http://www.openvas.org/openvas-nvt-feed.html
http://www.openvas.org/

137

OWASP ZCR Shellcoder

SBB
Description

OWASP ZCR Shellcoder is an open source software in python language which
lets you generate customized shellcodes for various operation systems.
Shellcodesare small codes in assembly which could be use as the payload in
software exploiting. Other usages are in malwares, bypassing antiviruses,
obfuscated codes and etc.

SBB License GNU General Public License (GPL) 3.0

Core
Technology

Python

Project URL https://www.owasp.org/index.php/OWASP_ZSC_Tool_Project

Source
Location

https://github.com/Ali-Razmjoo/OWASP-ZSC/

Tag(s) Security, Test Tool

OWASP Zed Attack Proxy (ZAP)

SBB
Descriptio
n

The OWASP Zed Attack Proxy (ZAP) is an easy to use integrated penetration
testing tool for finding vulnerabilities in web applications.

It is designed to be used by people with a wide range of security experience
and as such is ideal for developers and functional testers who are new to
penetration testing as well as being a useful addition to an experienced pen

https://www.owasp.org/index.php/OWASP_ZSC_Tool_Project
https://github.com/Ali-Razmjoo/OWASP-ZSC/

138

testers toolbox.

SBB
License

Apache License 2.0

Core
Technolog
y

Java

Project
URL

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=M
ain

Source
Location

https://github.com/zaproxy/zaproxy

Tag(s) Security

Phpseclib (PHP Secure Communications Library)

SBB
Description

Phpseclib is designed to be ultra-compatible. It works on PHP4+ (PHP4,
assuming the use of PHP_Compat) and doesn’t require any extensions. For
purposes of speed, mcrypt is used if it’s available as is gmp or bcmath (in
that order), but they are not required. Phpseclib is designed to be fully
interoperable with OpenSSL and other standardized cryptography programs
and protocols.

Phpseclib is a pure-PHP implementations of:

 BigIntegers

 RSA

 SSH2

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Main
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Main
https://github.com/zaproxy/zaproxy
http://pear.php.net/package/PHP_Compat

139

 SFTP

 X.509

 Symmetric key encryption

o AES

o Rijndael

o Twofish

o Blowfish

o DES

o 3DES

o RC4

o RC2

SBB License MIT License

Core
Technology

PHP

Project URL http://phpseclib.sourceforge.net/

Source
Location

https://github.com/phpseclib/phpseclib

Tag(s) Cryptography, Security

RIPS (code analyser)

http://phpseclib.sourceforge.net/
https://github.com/phpseclib/phpseclib

140

SBB
Description

RIPS is a tool written in PHP to find vulnerabilities in PHP applications using
static code analysis. By tokenizing and parsing all source code files RIPS is
able to transform PHP source code into a program model and to detect
sensitive sinks (potentially vulnerable functions) that can be tainted by
userinput (influenced by a malicious user) during the program flow. Besides
the structured output of found vulnerabilities RIPS also offers an integrated
code audit framework for further manual analysis.

RIPS was released during the Month of PHP Security (www.php-security.org).

Features

 detect XSS, SQLi, File disclosure, LFI/RFI, RCE vulnerabilities and
more

 5 verbosity levels for debugging your scan results

 mark vulnerable lines in source code viewer

 highlight variables in the code viewer

 user-defined function code by mouse-over on detected call

 active jumping between function declaration and calls

 list of all user-defined functions (defines and calls), program entry
points (user input) and scanned files (with includes) connected to
the source code viewer

 graph visualization for files and includes as well as functions and
calls

 create CURL exploits for detected vulnerabilities with few clicks

 visualization, description, example, PoC, patch and securing
function list for every vulnerability

 7 different syntax highlighting colour schemata

 display scan result in form of a top-down flow or bottom-up trace

 only minimal requirement is a local webserver with PHP and a
browser (tested with Firefox)

http://www.php-security.org/

141

 regex search function

SBB License GNU General Public License (GPL) 3.0

Core
Technology

PHP

Project URL http://rips-scanner.sourceforge.net/

Source
Location

http://sourceforge.net/projects/rips-scanner/

Tag(s) Code Analyzer, Security

Security Monkey

SBB
Description

Security Monkey monitors policy changes and alerts on insecure
configurations in an AWS account. While Security Monkey’s main purpose is
security, it also proves a useful tool for tracking down potential problems as it
is essentially a change tracking system.

More information: http://techblog.netflix.com/2014/06/announcing-
security-monkey-aws-security.html

SBB License Apache License 2.0

Core
Technology

Python

Project URL http://securitymonkey.readthedocs.org/en/latest/

http://rips-scanner.sourceforge.net/
http://sourceforge.net/projects/rips-scanner/
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://securitymonkey.readthedocs.org/en/latest/

142

Source
Location

https://github.com/Netflix/security_monkey

Tag(s) Security, SIEM

SIMP (The System Integrity Management Platform)

SBB
Description

SIMP is a framework that aims to provide a reasonable combination of
security compliance and operational flexibility. Fundamentally, SIMP is a
framework that is designed to be secure from a practical point of view out of
the box. As a framework, SIMP is designed to be flexed to meet the needs of
the end user.

The ultimate goal of the project is to provide a complete management
environment focused on compliance with the various profiles in the SCAP
Security Guide Project and industry best practice.

Though it is fully capable out of the box, the intent of SIMP is to be molded to
your target environment in such a way that deviations are easily identifiable
to both Operations Teams and Security Officers. This project is released to the
public by the US National Security Agency.

SBB License MIT License

Core
Technology

Project URL https://github.com/NationalSecurityAgency/SIMP

Source
Location

https://github.com/simp

https://github.com/Netflix/security_monkey
https://fedorahosted.org/scap-security-guide/
https://fedorahosted.org/scap-security-guide/
https://github.com/NationalSecurityAgency/SIMP
https://github.com/simp

143

Tag(s) Audit, Security

Simplify

SBB
Description

Simplify uses a virtual machine to understand what an app does. Then, it
applies optimizations to create code that behaves identically, but is easier for
a human to understand. Specifically, it takes Smali files as input and outputs a
Dex file with (hopefully) identical semantics but less complicated structure.

For example, if an app’s strings are encrypted, Simplify will interpret the app
in its own virtual machine to determine semantics. Then, it uses the apps own
code to decrypt the strings and replaces the encrypted strings and the
decryption method calls with the decrypted versions. It’s a generic
deobfuscator because Simplify doesn’t need to know how the decryption
works ahead of time. This technique also works well for eliminating different
types of white noise, such as no-ops and useless arithmetic.

SBB License MIT License

Core
Technology

Project URL

Source
Location

https://github.com/CalebFenton/simplify

Tag(s) Code Analyzer, Security

https://github.com/CalebFenton/simplify

144

Streisand

SBB
Description

Streisand is software for setting up secure connections with your friends. A
bit like TOR. Communication can be sets up over L2TP/IPsec, OpenSSH,
OpenVPN, Shadowsocks, sslh, Stunnel, and a Tor bridge.

SBB License GNU General Public License (GPL) 3.0

Core
Technology

Python

Project URL https://github.com/jlund/streisand

Source
Location

https://github.com/jlund/streisand

Tag(s) Privacy, Security

Stunnel

SBB
Description

Stunnel is a proxy designed to add TLS encryption functionality to existing
clients and servers without any changes in the programs’ code. Its
architecture is optimized for security, portability, and scalability (including
load-balancing), making it suitable for large deployments.

Stunnel uses the OpenSSL library for cryptography, so it supports whatever
cryptographic algorithms are compiled into the library. It can benefit from
the FIPS 140-2 validation of the OpenSSL FIPS Object Module, as long as the
building process meets its Security Policy.

https://github.com/jlund/streisand
https://github.com/jlund/streisand

145

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C

Project URL https://www.stunnel.org/index.html

Source
Location

http://www.usenix.org.uk/mirrors/stunnel/

Tag(s) Cryptography, Security

Suricata

SBB
Description

Suricata is a high performance Network IDS, IPS and Network Security
Monitoring engine. Open Source and owned by a community run non-profit
foundation, the Open Information Security Foundation (OISF). Suricata is
developed by the OISF and its supporting vendors.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

C

Project URL http://suricata-ids.org

Source
Location

https://github.com/inliniac/suricata

https://www.stunnel.org/index.html
http://www.usenix.org.uk/mirrors/stunnel/
http://suricata-ids.org/about/open-source/
http://idsips.wordpress.com/about/oisf/
http://suricata-ids.org/about/consortium/
http://suricata-ids.org/
https://github.com/inliniac/suricata

146

Tag(s) IDS, Security

SWAMP (Software Assurance Marketplace)

SBB
Description

This security application is a SAAS solution. However it is built of OSS
building blocks and available to be use under an friendly OSS license for
everyone.

 Capabilities of the SWAMP

 Static analysis

 Operates on the original source code

 Tracks problems down to the location in the original code

 Relatively quick and easy to use

 Provides complete code coverage

 Compare results from multiple tools

 Find and visualize overlaps

 Correlate results

Languages supported: C/C++,Java source, Java bytecode, Python, Ruby. PHP
and Javascript are on the roadmap for end 2015 to be supported.

SBB License GNU General Public License (GPL) 3.0

Core
Technology

147

Project URL https://www.mir-swamp.org

Source
Location

Tag(s) Code Analyzer, Security

Tor

SBB
Description

Tor is free software and an open network that helps you defend against
traffic analysis, a form of network surveillance that threatens personal
freedom and privacy, confidential business activities and relationships, and
state security. Creating your own Tor network is easy with this software, or
use existing Tor nodes.

SBB License GNU General Public License (GPL) 2.0

Core
Technology

Project URL https://www.torproject.org

Source
Location

https://www.torproject.org/dist/

Tag(s) Cryptography, Privacy, Security

https://www.mir-swamp.org/
https://www.torproject.org/
https://www.torproject.org/dist/

148

Vault

SBB
Description

Vault is a tool for securely accessing secrets. A secret is anything that you
want to tightly control access to, such as API keys, passwords, certificates,
and more. Vault provides a unified interface to any secret, while providing
tight access control and recording a detailed audit log.

Vault secures, stores, and tightly controls access to tokens, passwords,
certificates, API keys, and other secrets in modern computing. Vault handles
leasing, key revocation, key rolling, and auditing. Vault presents a unified API
to access multiple backends: HSMs, AWS IAM, SQL databases, raw key/value,
and more.

A modern system requires access to a multitude of secrets: database
credentials, API keys for external services, credentials for service-oriented
architecture communication, etc. Understanding who is accessing what
secrets is already very difficult and platform-specific. Adding on key rolling,
secure storage, and detailed audit logs is almost impossible without a custom
solution. This is where Vault steps in.

SBB License Mozilla Public License (MPL) 1.1

Core
Technology

GO

Project URL https://vaultproject.io

Source
Location

https://github.com/hashicorp/vault

Tag(s) Security

https://vaultproject.io/
https://github.com/hashicorp/vault

149

w3af (Web Application Attack and Audit Framework)

SBB
Description

w3af is a Web Application Attack and Audit Framework. The project’s goal is
to create a framework to help you secure your web applications by finding
and exploiting all web application vulnerabilities.

The w3af framework is divided into three main sections:

1. The core, which coordinates the whole process and provides
libraries for using in plugins.

2. The user interfaces, which allow the user to configure and start
scans

3. The plugins, which find links and vulnerabilities

SBB License GNU General Public License (GPL) 2.0

Core
Technology

Phython

Project URL http://w3af.org/

Source
Location

https://github.com/andresriancho/w3af/

Tag(s) Audit, Security, Test Tool

http://w3af.org/
https://github.com/andresriancho/w3af/

150

References
When creating this reference architecture, we performed serious research. We used many
valuable sources (books, articles, scientific publications, blogs, etc). Below some reference
for those who like to have more background information.

AICPA/CICA Privacy Maturity Model March
2011, http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy/G
enerallyAcceptedPrivacyPrinciples/DownloadableDocuments/AICPA-CICA-Privacy-
Maturity-Model-ebook.pdf

Common Weakness Enumeration (CWE™), cwe.mitre.org

Generally Accepted Privacy Principles
(GAPP),https://www.cippguide.org/2010/07/01/generally-accepted-privacy-principles-
gapp/

Jericho security model, Open Group, https://collaboration.opengroup.org/jericho/

NIST, http://www.nist.gov/cyberframework/index.cfm

OECD privacy framework 2009, 2010,http://oecdprivacy.org/

Open Security Architecture (OSA), http://www.opensecurityarchitecture.org/

Open State Foundation, http://www.openstate.eu/

OSS Security Badges project (Work in progress), D.
Wheeler, https://github.com/linuxfoundation/cii-best-practices-
badge/blob/master/criteria.md

Privacy Management Reference Model and Methodology (PMRM) Version 1.0, Committee
Specification Draft 01, 26 March 2012, http://docs.oasis-
open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.pdf

Privacy Management Reference Model and Methodology (PMRM) Version
1.0, http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.html

Securing Web Application Technologies [SWAT] Checklist , https://software-
security.sans.org/resources/swat

http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy/GenerallyAcceptedPrivacyPrinciples/DownloadableDocuments/AICPA-CICA-Privacy-Maturity-Model-ebook.pdf
http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy/GenerallyAcceptedPrivacyPrinciples/DownloadableDocuments/AICPA-CICA-Privacy-Maturity-Model-ebook.pdf
http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy/GenerallyAcceptedPrivacyPrinciples/DownloadableDocuments/AICPA-CICA-Privacy-Maturity-Model-ebook.pdf
https://collaboration.opengroup.org/jericho/
http://www.nist.gov/cyberframework/index.cfm
http://www.openstate.eu/
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/criteria.md
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/criteria.md
http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.pdf
http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.pdf
http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.html
https://software-security.sans.org/resources/swat
https://software-security.sans.org/resources/swat

151

Security in-a-box, Tactical Technology Collective and Front Line
Defenders,https://securityinabox.org/en

Software Assurance Maturity Model (OWASP), http://www.opensamm.org/

The Free Software Foundation,https://www.gnu.org

The Open Source Initiative (OSI), http://opensource.org/licenses/

Web Authorization Protocol (OAuth), https://tools.ietf.org/html/draft-ietf-oauth-v2-
threatmodel-01

http://www.opensamm.org/
http://opensource.org/licenses/

152

Licensing
Thank you for downloading or buying this book. We want people to reuse content of this
reference architecture in their own security solution architectures or privacy solution
architectures. Security is hard enough, so reuse good open solutions available today. If you
like to reuse text of this reference architecture in your own work: presentations, articles or
your own book you are free to do so under the conditions that belong to the Creative
Commons cc-by-sa license.

We have chosen to use the cc-by-sa license so this reference architecture is created to be
shared as much as possible. Also using the cc-by-sa license lowers barriers for creating a
better version of this reference architecture.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License. See http://creativecommons.org/licenses/by-sa/4.0/ for the full license text or
here below:

You are free to:

 Share — copy and redistribute the material in any medium or format

 Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

 ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

Notices:

153

 You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

 No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

154

Contributing
We encourage all security professionals to improve this reference architecture. Join the
team to:

 Add security or privacy principles.

 Add security or privacy models.

 Help us create the largest OSS reference framework on OSS security and privacy
applications and tools.

 Create better graphics and text.

 Add threat models that can be easily reused.

 Improve criteria on selecting OSS solutions for security and privacy
applications.

 Create tools to speed up the process of making use of this reference
architecture. E.g. we created a GPL WordPress tool to manage and create
security specification documents fast. Help us to improve these tools or create
your own.

Your contributions to this Guide are greatly appreciated as long as contributions fit within
the scope and goal of this security and privacy reference architecture. As an open project,
this Open Reference Architecture for Security and Privacy shall always remain vendor-
neutral and freely available for all to use. If you contribute you will of course get credit
(mentioned in upcoming publications).

You can contribute using the following Github repository:

https://github.com/nocomplexity/SecurityPrivacyReferenceArchitecture

Please observe our contribution guidelines before creating a pull request:

With the exception of typos and spelling mistakes (feel free to fix these and they'll be
merged), please observe the following guides:

 Always open an issue first. This will allow us to determine whether or not the
change should take place. Explain your issue, and we will discuss it with you. If
we agree the change is necessary we will mark it as TODO and will fix it when

https://github.com/nocomplexity/SecurityPrivacyReferenceArchitecture

155

we get a chance, or we will allow a member of the community to supply the
change with a pull request.

 Note that this reference architecture is intended to be a helpful resource aimed
at professional security/privacy architects and designers.

 Contributions must fit within the scope and goal of this security and privacy
reference architecture. Of course we like to discuss your input for changing
scope or goals if needed!

Please follow the following procedure when contributing to this document:

 Fork the chapter you want to change or contribute on GitHub, with the Fork
button

 Clone the repository to your computer

 Create a branch in which you make your patch git checkout -b <branchname>

 Make your changes, commit and push the branch

o edit, edit, edit

o git add files, git commit

o git push origin <branchname>

 Create a pull request for the branch <branchname> you created (not 'master')

Since we know many security professionals are not familiar with GitHub, we are currently
investigating other methods to lower barriers for contributing to this project.

The maintainers review your pull request and your patch is merged with the master branch
ASAP.

Licensing

156

When you submit text to which you hold the copyright, you agree to license it under:

 Creative Commons Attribution-ShareAlike 4.0 Unported License (“CC BY-SA”),
or

 CC0 1.0 Universal (CC0 1.0)

	About the authors
	Asim Jahan
	Maikel Mardjan

	Foreword
	Introduction
	Why security and privacy
	Advantage of using this reference architecture
	Scope of this reference architecture
	What about security patterns?
	How this reference architecture is structured

	Security Models
	Introduction
	Common attack vectors
	Hosting, hardware, firmware and other invisible threats
	Security Personas
	Threat Models
	Privacy Management Reference Model
	NIST Security framework
	Jericho Security Model
	Security Architecture Landscape (OSA)
	Software Assurance Maturity Model (SAMM)
	Security within the SDLC process
	IoT Threat Model
	NIST Cloud Computing Security model
	Mobile Threat model
	DDoS model
	OAuth 2.0 Threat Model

	Security and Privacy Principles
	What are principles?
	Principles or requirements?
	What are requirements?
	Security Principles
	Privacy Principles

	Using Open Source for security and privacy protection
	Introduction
	What is open Source Software (OSS)?
	The power of open for security and privacy
	Determining quality of OSS for security and privacy applications
	Architecture and design
	Maintainability
	Reliability
	Security
	Privacy
	Change control
	Documentation
	Community
	Integration
	Support
	Legal

	OSS Security and Privacy System Building Blocks
	Introduction
	OSS Security Applications

	References
	Licensing
	Contributing

